Optimality Conditions for Convex Stochastic Optimization Problems in Banach Spaces with Almost Sure State Constraints

We analyze a convex stochastic optimization problem where the state is assumed to belong to the Bochner space of essentially bounded random variables with images in a reflexive and separable Banach space. For this problem, we obtain optimality conditions that are, with an appropriate model, necessary and sufficient. Additionally, the Lagrange multipliers associated with optimality conditions are integrable vector-valued functions and not only measures. A model problem is given demonstrating the application to PDE-constrained optimization under uncertainty.

[1]  Georg Stadler,et al.  Mean-Variance Risk-Averse Optimal Control of Systems Governed by PDEs with Random Parameter Fields Using Quadratic Approximations , 2016, SIAM/ASA J. Uncertain. Quantification.

[2]  Alexander Shapiro,et al.  Lectures on Stochastic Programming: Modeling and Theory , 2009 .

[3]  Anton Schiela,et al.  Barrier Methods for Optimal Control Problems with State Constraints , 2009, SIAM J. Optim..

[4]  Frances Y. Kuo,et al.  A Quasi-Monte Carlo Method for Optimal Control Under Uncertainty , 2021, SIAM/ASA J. Uncertain. Quantification.

[5]  T. Pennanen,et al.  Convex integral functionals of processes of bounded variation , 2016, 1605.07939.

[6]  W. Wollner,et al.  Barrier Methods for Optimal Control Problems with Convex Nonlinear Gradient State Constraints , 2011, SIAM J. Optim..

[7]  Jean-Pierre Aubin,et al.  Subdifferentials of Convex Functions , 1998 .

[8]  Peng Chen,et al.  Taylor approximation and variance reduction for PDE-constrained optimal control under uncertainty , 2018, J. Comput. Phys..

[9]  Martin Rumpf,et al.  On Shape Optimization with Stochastic Loadings , 2012, Constrained Optimization and Optimal Control for Partial Differential Equations.

[10]  Susanne C. Brenner,et al.  A New Convergence Analysis of Finite Element Methods for Elliptic Distributed Optimal Control Problems with Pointwise State Constraints , 2017, SIAM J. Control. Optim..

[11]  Michael Hintermüller,et al.  The Length of the Primal-Dual Path in Moreau-Yosida-Based Path-Following Methods for State Constrained Optimal Control , 2014, SIAM J. Optim..

[12]  Jürgen Appell,et al.  Nonlinear Superposition Operators , 1990 .

[13]  E. Casas Control of an elliptic problem with pointwise state constraints , 1986 .

[14]  M. Veraar,et al.  Analysis in Banach Spaces: Volume I: Martingales and Littlewood-Paley Theory , 2016 .

[15]  K. Gröger,et al.  AW1,p-estimate for solutions to mixed boundary value problems for second order elliptic differential equations , 1989 .

[16]  R. Rockafellar Conjugate Duality and Optimization , 1987 .

[17]  Drew P. Kouri,et al.  Existence and Optimality Conditions for Risk-Averse PDE-Constrained Optimization , 2018, SIAM/ASA J. Uncertain. Quantification.

[18]  Martin Rumpf,et al.  Shape Optimization Under Uncertainty---A Stochastic Programming Perspective , 2008, SIAM J. Optim..

[19]  R. Rockafellar,et al.  Stochastic Convex Programming: Relatively Complete Recourse and Induced Feasibility , 1976 .

[20]  Michael Ulbrich,et al.  Semismooth Newton Methods for Variational Inequalities and Constrained Optimization Problems in Function Spaces , 2011, MOS-SIAM Series on Optimization.

[21]  V. Levin CONVEX INTEGRAL FUNCTIONALS AND THE THEORY OF LIFTING , 1975 .

[22]  Benjamin Pfaff,et al.  Perturbation Analysis Of Optimization Problems , 2016 .

[23]  W. Wollner,et al.  A Stochastic Gradient Method With Mesh Refinement for PDE-Constrained Optimization Under Uncertainty , 2019, SIAM J. Sci. Comput..

[24]  B. Vexler,et al.  New regularity results and finite element error estimates for a class of parabolic optimal control problems with pointwise state constraints , 2021, ESAIM: Control, Optimisation and Calculus of Variations.

[25]  Qi Gong,et al.  Optimal Control of Uncertain Systems Using Sample Average Approximations , 2016, SIAM J. Control. Optim..

[26]  Bart G. van Bloemen Waanders,et al.  A Trust-Region Algorithm with Adaptive Stochastic Collocation for PDE Optimization under Uncertainty , 2012, SIAM J. Sci. Comput..

[27]  LSU Digital Commons LSU Digital Commons A One Dimensional Elliptic Distributed Optimal Control Problem A One Dimensional Elliptic Distributed Optimal Control Problem with Pointwise Derivative Constraints with Pointwise Derivative Constraints , 2022 .

[28]  Drew P. Kouri,et al.  Risk-Averse PDE-Constrained Optimization Using the Conditional Value-At-Risk , 2016, SIAM J. Optim..

[29]  Teemu Pennanen,et al.  Convex duality in optimal investment and contingent claim valuation in illiquid markets , 2016, Finance and Stochastics.

[30]  Stefan Wendl,et al.  Optimal Control of Partial Differential Equations , 2021, Applied Mathematical Sciences.

[31]  R. Rockafellar,et al.  Stochastic convex programming: Kuhn-Tucker conditions , 1975 .

[32]  R. Rockafellar Integrals which are convex functionals. II , 1968 .

[33]  D. Kouri,et al.  Risk-averse optimal control of semilinear elliptic PDEs , 2020, ESAIM: Control, Optimisation and Calculus of Variations.

[34]  K. Kunisch,et al.  Augmented Lagrangian Techniques for Elliptic State Constrained Optimal Control Problems , 1997 .

[35]  Jan van Neerven,et al.  Analysis in Banach Spaces , 2023, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge / A Series of Modern Surveys in Mathematics.

[36]  Caroline Geiersbach,et al.  Stochastic approximation for optimization in shape spaces , 2021, SIAM J. Optim..

[37]  V. Leclère Contributions to decomposition methods in stochastic optimization , 2014 .

[38]  Frances Y. Kuo,et al.  A quasi-Monte Carlo Method for an Optimal Control Problem Under Uncertainty , 2019, ArXiv.

[39]  Eduardo Casas,et al.  Optimal Control of Partial Differential Equations , 2017 .

[40]  Johannes O. Royset,et al.  Engineering Decisions under Risk Averseness , 2015 .

[41]  Vincent Leclère Epiconvergence of relaxed stochastic optimization problems , 2019, Oper. Res. Lett..

[42]  J. Schwartz,et al.  Linear Operators. Part I: General Theory. , 1960 .

[43]  Stefan Vandewalle,et al.  Robust Optimization of PDEs with Random Coefficients Using a Multilevel Monte Carlo Method , 2017, SIAM/ASA J. Uncertain. Quantification.

[44]  STOCHASTIC CONVEX PROGRAMMING: SINGULAR MULTIPLIERS AND EXTENDED DUALITY SINGULAR MULTIPLIERS AND DUALITY , 1976 .

[45]  Eduardo Casas,et al.  New regularity results and improved error estimates for optimal control problems with state constraints , 2014 .

[46]  R. Rockafellar,et al.  Stochastic convex programming: basic duality. , 1976 .

[47]  G. Pflug,et al.  Multistage Stochastic Optimization , 2014 .

[48]  D. Hömberg,et al.  Properties of Chance Constraints in Infinite Dimensions with an Application to PDE Constrained Optimization , 2018 .

[49]  R. Tyrrell Rockafellar,et al.  Convex Integral Functionals and Duality , 1971 .

[50]  J. Frédéric Bonnans,et al.  Perturbation Analysis of Optimization Problems , 2000, Springer Series in Operations Research.