A hybrid multiobjective evolutionary algorithm model based on local linear embedding
暂无分享,去创建一个
Wei Zhan | Ming Zhang | Wenling You | Wei Zhan | Wen-Ching You | Ming Zhang
[1] Matti Pietikäinen,et al. Supervised Locally Linear Embedding , 2003, ICANN.
[2] Bernhard Sendhoff,et al. Voronoi-based estimation of distribution algorithm for multi-objective optimization , 2004, Proceedings of the 2004 Congress on Evolutionary Computation (IEEE Cat. No.04TH8753).
[3] RåHW Fkryd. Multiobjective Bayesian Optimization Algorithm for Combinatorial Problems : Theory and practice , 2002 .
[4] Kalyanmoy Deb,et al. Multi-objective test problems, linkages, and evolutionary methodologies , 2006, GECCO.
[5] Edmondo A. Minisci,et al. MOPED: A Multi-objective Parzen-Based Estimation of Distribution Algorithm for Continuous Problems , 2003, EMO.
[6] Lothar Thiele,et al. Multiobjective evolutionary algorithms: a comparative case study and the strength Pareto approach , 1999, IEEE Trans. Evol. Comput..
[7] David E. Goldberg,et al. Decomposable Problems, Niching, and Scalability of Multiobjective Estimation of Distribution Algorithms , 2005, ArXiv.
[8] D. Donoho,et al. Hessian eigenmaps: Locally linear embedding techniques for high-dimensional data , 2003, Proceedings of the National Academy of Sciences of the United States of America.
[9] Qingfu Zhang,et al. A model-based evolutionary algorithm for bi-objective optimization , 2005, 2005 IEEE Congress on Evolutionary Computation.
[10] Dirk Thierens,et al. Multi-objective mixture-based iterated density estimation evolutionary algorithms , 2001 .
[11] Qingfu Zhang,et al. This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination. IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION 1 RM-MEDA: A Regularity Model-Based Multiobjective Estimation of , 2022 .
[12] Kalyanmoy Deb,et al. A fast and elitist multiobjective genetic algorithm: NSGA-II , 2002, IEEE Trans. Evol. Comput..
[13] Maoguo Gong,et al. Hybrid multiobjective estimation of distribution algorithm by local linear embedding and an immune inspired algorithm , 2009, 2009 IEEE Congress on Evolutionary Computation.
[14] Kalyanmoy Deb,et al. Muiltiobjective Optimization Using Nondominated Sorting in Genetic Algorithms , 1994, Evolutionary Computation.
[15] Marco Laumanns,et al. SPEA2: Improving the strength pareto evolutionary algorithm , 2001 .
[16] Qingfu Zhang,et al. Combining Model-based and Genetics-based Offspring Generation for Multi-objective Optimization Using a Convergence Criterion , 2006, 2006 IEEE International Conference on Evolutionary Computation.
[17] S T Roweis,et al. Nonlinear dimensionality reduction by locally linear embedding. , 2000, Science.
[18] Joshua D. Knowles,et al. Local Search, Multiobjective Optimization and the Pareto Archived Evolution Strategy , 1999 .