Capacitively coupled ECG sensor system with digitally assisted noise cancellation for wearable application

This paper describes a digitally assisted noise cancellation method for a capacitively coupled electrocardiogram (ECG) sensor. This sensor using an insulated electrode can measure ECG through an insulator such as clothing without direct skin contact. In wearable applications, this type of ECG sensor is superior in terms of usability compared with the pasted type ECG sensor. However, noise immunity is an important difficulty related to capacitively coupled ECG sensors because it requires very high input impedance and small input capacitance for the first-stage amplifier. This circuit characteristic considerably degrades its noise immunity for the power line noise and motion artifact. To address this difficulty, we propose the noise feedback method, which can improve the availability of a capacitively coupled ECG sensor. Noise caused by body movement and the surrounding environment included in the output of the AD converter is extracted by digital filters. DC offset, baseline fluctuation, and low-frequency component of body motion noise are extracted using a variable-gain loop filter. Power line noise is also extracted using a peak filter. Then the noise waveform is estimated from the result of the previous cycle. This noise information is DA converted and given feedback to the first stage amplifier. The proposed method was evaluated using prototype sensor in an actual environment. ECG measurements were confirmed in both two-electrode configuration and single-electrode configuration. Measurement results show that the power line noise can be suppressed to −29.2 dB at maximum.

[1]  Atila Alvandpour,et al.  Design and evaluation of a capacitively coupled sensor readout circuit, toward contact-less ECG and EEG , 2010, 2010 Biomedical Circuits and Systems Conference (BioCAS).

[2]  K. Park,et al.  The electrically noncontacting ECG measurement on the toilet seat using the capacitively-coupled insulated electrodes , 2004, The 26th Annual International Conference of the IEEE Engineering in Medicine and Biology Society.

[3]  Ko Keun Kim,et al.  The ECG measurement in the bathtub using the insulated electrodes , 2004, The 26th Annual International Conference of the IEEE Engineering in Medicine and Biology Society.

[4]  Yong Gyu Lim,et al.  ECG measurement on a chair without conductive contact , 2006, IEEE Transactions on Biomedical Engineering.

[5]  Kawaguchi Hiroshi,et al.  Adaptive noise cancellation method for capacitively coupled ECG sensor using single insulated electrode , 2016 .

[6]  Rik Vullings,et al.  Motion Artifacts in Capacitive ECG Measurements: Reducing the Combined Effect of DC Voltages and Capacitance Changes Using an Injection Signal , 2015, IEEE Transactions on Biomedical Engineering.

[7]  Masaaki Makikawa,et al.  Tomographical ECG Measurement Using Capacitance Type Multi Electrodes , 2007 .

[8]  Stephan Heuer,et al.  Towards a capacitively coupled electrocardiography system for car seat integration , 2009 .

[9]  Ondrej Kovac,et al.  Ultra-wearable capacitive coupled and common electrode-free ECG monitoring system , 2012, 2012 Annual International Conference of the IEEE Engineering in Medicine and Biology Society.