MRA AND POD APPLICATION FOR AERODYNAMIC DESIGN OPTIMIZATION
暂无分享,去创建一个
T. H. Jo | B. C. Koo | D. H. Lee | J. H. Han | K. H. Park | D. Lee | B. Koo | T. Jo | J. H. Han | K. Park
[1] P. Colella,et al. Local adaptive mesh refinement for shock hydrodynamics , 1989 .
[2] Do Hyung Lee,et al. Improvement in Computational Efficiency of Euler Equations Via a Modified Sparse Point Representation Method , 2008 .
[3] Barna L. Bihari,et al. Multiresolution Schemes for the Numerical Solution of 2-D Conservation Laws I , 1997, SIAM J. Sci. Comput..
[4] Rosa Donat,et al. Shock-Vortex Interactions at High Mach Numbers , 2003, J. Sci. Comput..
[5] Mats Holmström,et al. Solving Hyperbolic PDEs Using Interpolating Wavelets , 1999, SIAM J. Sci. Comput..
[6] Taehyoun Kim,et al. Efficient Reduced-Order System Identification for Linear Systems with Multiple Inputs , 2005 .
[7] Maenghyo Cho,et al. Reduced order model of three-dimensional Euler equations using proper orthogonal decomposition basis , 2010 .
[8] Dong-Hoon Choi,et al. Efficient approximation method for constructing quadratic response surface model , 2001 .
[9] Björn Sjögreen,et al. Numerical experiments with the multiresolution scheme for the compressible Euler equations , 1995 .
[10] Albert Cohen,et al. Fully adaptive multiresolution finite volume schemes for conservation laws , 2003, Math. Comput..
[11] A. Harten. Adaptive Multiresolution Schemes for Shock Computations , 1994 .
[12] P. Beran,et al. Reduced-order modeling: new approaches for computational physics , 2004 .
[13] Rosa Donat,et al. Point Value Multiscale Algorithms for 2D Compressible Flows , 2001, SIAM J. Sci. Comput..
[14] Hyungmin Kang,et al. Multi‐resolution analysis for high accuracy and efficiency of Euler computation , 2014 .
[15] Do Hyung Lee,et al. Improved Computational Efficiency of Unsteady Flow Problems via the Modified Wavelet Method , 2008 .
[16] Maenghyo Cho,et al. Reduced-Order Model with an Artificial Neural Network for Aerostructural Design Optimization , 2013 .
[17] Siegfried Müller,et al. Fully Adaptive Multiscale Schemes for Conservation Laws Employing Locally Varying Time Stepping , 2007, J. Sci. Comput..