Overcoming Barriers to Scalability in Variational Quantum Monte Carlo

The variational quantum Monte Carlo (VQMC) method received significant attention in the recent past because of its ability to overcome the curse of dimensionality inherent in many-body quantum systems. Close parallels exist between VQMC and the emerging hybrid quantum-classical computational paradigm of variational quantum algorithms. VQMC overcomes the curse of dimensionality by performing alternating steps of Monte Carlo sampling from a parametrized quantum state followed by gradient-based optimization. While VQMC has been applied to solve high-dimensional problems, it is known to be difficult to parallelize, primarily owing to the Markov Chain Monte Carlo (MCMC) sampling step. In this work, we explore the scalability of VQMC when autoregressive models, with exact sampling, are used in place of MCMC. This approach can exploit distributed-memory, shared-memory and/or GPU parallelism in the sampling task without any bottlenecks. In particular, we demonstrate GPU-scalability of VQMC for solving up to ten-thousand dimensional combinatorial optimization problems.

[1]  Bamdev Mishra,et al.  Manopt, a matlab toolbox for optimization on manifolds , 2013, J. Mach. Learn. Res..

[2]  S. Aaronson Computational complexity: Why quantum chemistry is hard , 2009 .

[3]  Mohamed Hibat-Allah,et al.  Recurrent Neural Network Wavefunctions , 2020 .

[4]  P. Green Reversible jump Markov chain Monte Carlo computation and Bayesian model determination , 1995 .

[5]  Alex Graves,et al.  Conditional Image Generation with PixelCNN Decoders , 2016, NIPS.

[6]  Vijay S. Pande,et al.  Classical Quantum Optimization with Neural Network Quantum States. , 2019, 1910.10675.

[7]  David P. Williamson,et al.  Improved approximation algorithms for maximum cut and satisfiability problems using semidefinite programming , 1995, JACM.

[8]  Stephen Boyd,et al.  A Rewriting System for Convex Optimization Problems , 2017, ArXiv.

[9]  W. K. Hastings,et al.  Monte Carlo Sampling Methods Using Markov Chains and Their Applications , 1970 .

[10]  Amnon Shashua,et al.  Deep autoregressive models for the efficient variational simulation of many-body quantum systems , 2019, Physical review letters.

[11]  Matthias Troyer,et al.  Solving the quantum many-body problem with artificial neural networks , 2016, Science.

[12]  Shravan Veerapaneni,et al.  Natural evolution strategies and variational Monte Carlo , 2020, Mach. Learn. Sci. Technol..

[13]  Samy Bengio,et al.  Modeling High-Dimensional Discrete Data with Multi-Layer Neural Networks , 1999, NIPS.

[14]  Hugo Larochelle,et al.  The Neural Autoregressive Distribution Estimator , 2011, AISTATS.

[15]  Max Welling,et al.  Improved Variational Inference with Inverse Autoregressive Flow , 2016, NIPS 2016.

[16]  姜寅求 1970 , 1970, Literatur in der SBZ/DDR.

[17]  Pierre-Antoine Absil,et al.  Trust-Region Methods on Riemannian Manifolds , 2007, Found. Comput. Math..

[18]  W. L. Mcmillan Ground State of Liquid He 4 , 1965 .

[19]  Donald Geman,et al.  Stochastic Relaxation, Gibbs Distributions, and the Bayesian Restoration of Images , 1984, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[20]  S. Duane,et al.  Hybrid Monte Carlo , 1987 .

[21]  Ivan Kobyzev,et al.  Normalizing Flows: An Introduction and Review of Current Methods , 2020, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[22]  신기덕 2010 , 2019, The Winning Cars of the Indianapolis 500.

[23]  Hugo Larochelle,et al.  MADE: Masked Autoencoder for Distribution Estimation , 2015, ICML.

[24]  F. Bach,et al.  Low-rank optimization for semidefinite convex problems , 2008, 0807.4423.

[25]  Renato D. C. Monteiro,et al.  A nonlinear programming algorithm for solving semidefinite programs via low-rank factorization , 2003, Math. Program..

[26]  Satoshi Morita,et al.  mVMC - Open-source software for many-variable variational Monte Carlo method , 2017, Comput. Phys. Commun..

[27]  C. Brown 1965 , 2017, Lie on your wounds.

[28]  Francis R. Bach,et al.  Low-Rank Optimization on the Cone of Positive Semidefinite Matrices , 2008, SIAM J. Optim..

[29]  S. Hewitt,et al.  2007 , 2018, Los 25 años de la OMC: Una retrospectiva fotográfica.

[30]  Lei Wang,et al.  Solving Statistical Mechanics using Variational Autoregressive Networks , 2018, Physical review letters.

[31]  L. Reatto,et al.  The Ground State of Liquid He(4) , 1969 .

[32]  Andrew Gelman,et al.  The No-U-turn sampler: adaptively setting path lengths in Hamiltonian Monte Carlo , 2011, J. Mach. Learn. Res..

[33]  Robert Koenig,et al.  Approximation algorithms for quantum many-body problems , 2018, Journal of Mathematical Physics.

[34]  Shun-ichi Amari,et al.  Natural Gradient Works Efficiently in Learning , 1998, Neural Computation.

[35]  S. Sorella GREEN FUNCTION MONTE CARLO WITH STOCHASTIC RECONFIGURATION , 1998, cond-mat/9803107.

[36]  Stephen P. Boyd,et al.  CVXPY: A Python-Embedded Modeling Language for Convex Optimization , 2016, J. Mach. Learn. Res..