Persistence Theory - From Quiver Representations to Data Analysis
暂无分享,去创建一个
[1] G. N. Lance,et al. A General Theory of Classificatory Sorting Strategies: 1. Hierarchical Systems , 1967, Comput. J..
[2] P. McMullen. The maximum numbers of faces of a convex polytope , 1970 .
[3] P. Gabriel. Unzerlegbare Darstellungen I , 1972 .
[4] L. Nazarova. REPRESENTATIONS OF QUIVERS OF INFINITE TYPE , 1973 .
[5] C. Ringel. The indecomposable representations of the dihedral 2-groups , 1975 .
[6] H. Tachikawa,et al. QF-3 rings. , 1975 .
[7] Keinosuke Fukunaga,et al. A Graph-Theoretic Approach to Nonparametric Cluster Analysis , 1976, IEEE Transactions on Computers.
[8] V. Kac. Infinite root systems, representations of graphs and invariant theory , 1980 .
[9] P. Gabriel. Auslander-Reiten sequences and representation-finite algebras , 1980 .
[10] S. P. Lloyd,et al. Least squares quantization in PCM , 1982, IEEE Trans. Inf. Theory.
[11] W. B. Johnson,et al. Extensions of Lipschitz mappings into Hilbert space , 1984 .
[12] James R. Munkres,et al. Elements of algebraic topology , 1984 .
[13] Nimrod Megiddo,et al. Linear Programming in Linear Time When the Dimension Is Fixed , 1984, JACM.
[14] Cary Webb. Decomposition of graded modules , 1985 .
[15] Anil K. Jain,et al. Algorithms for Clustering Data , 1988 .
[16] N. Jacobson,et al. Basic Algebra II , 1989 .
[17] Ketan Mulmuley,et al. On levels in arrangements and voronoi diagrams , 1991, Discret. Comput. Geom..
[18] Emo Welzl,et al. Smallest enclosing disks (balls and ellipsoids) , 1991, New Results and New Trends in Computer Science.
[19] Bernd Gärtner. A Subexponential Algorithm for Abstract Optimization Problems , 1992, FOCS.
[20] K. Grove. Critical point theory for distance functions , 1993 .
[21] Hans-Peter Kriegel,et al. A Density-Based Algorithm for Discovering Clusters in Large Spatial Databases with Noise , 1996, KDD.
[22] J. Hausmann. On the Vietoris-Rips complexes and a Cohomology Theory for metric spaces , 1996 .
[23] Sameer A. Nene,et al. Columbia Object Image Library (COIL100) , 1996 .
[24] J. V. van Hateren,et al. Independent component filters of natural images compared with simple cells in primary visual cortex , 1998, Proceedings of the Royal Society of London. Series B: Biological Sciences.
[25] Yoshua Bengio,et al. Gradient-based learning applied to document recognition , 1998, Proc. IEEE.
[26] A. Yakovleva. Representation of a quiver with relations , 1998 .
[27] Bernd Gärtner,et al. Fast and Robust Smallest Enclosing Balls , 1999, ESA.
[28] M. Gromov. Metric Structures for Riemannian and Non-Riemannian Spaces , 1999 .
[29] J. Tenenbaum,et al. A global geometric framework for nonlinear dimensionality reduction. , 2000, Science.
[30] J. Latschev. Vietoris-Rips complexes of metric spaces near a closed Riemannian manifold , 2001 .
[31] 公庄 庸三. Basic Algebra = 代数学入門 , 2002 .
[32] Bernard Chazelle,et al. Shape distributions , 2002, TOGS.
[33] R. Forman. A USER'S GUIDE TO DISCRETE MORSE THEORY , 2002 .
[34] A. Ben Hamza,et al. Geodesic Object Representation and Recognition , 2003, DGCI.
[35] C. Villani. Topics in Optimal Transportation , 2003 .
[36] Ron Kimmel,et al. On Bending Invariant Signatures for Surfaces , 2003, IEEE Trans. Pattern Anal. Mach. Intell..
[37] Bernd Gärtner,et al. Fast Smallest-Enclosing-Ball Computation in High Dimensions , 2003, ESA.
[38] Joseph S. B. Mitchell,et al. Approximate minimum enclosing balls in high dimensions using core-sets , 2003, ACM J. Exp. Algorithmics.
[39] Hans-Peter Kriegel,et al. Density-Based Clustering in Spatial Databases: The Algorithm GDBSCAN and Its Applications , 1998, Data Mining and Knowledge Discovery.
[40] Thomas A. Funkhouser,et al. The Princeton Shape Benchmark , 2004, Proceedings Shape Modeling Applications, 2004..
[41] D. Ruppert. The Elements of Statistical Learning: Data Mining, Inference, and Prediction , 2004 .
[42] Jovan Popovic,et al. Deformation transfer for triangle meshes , 2004, ACM Trans. Graph..
[43] André Lieutier,et al. Any open bounded subset of Rn has the same homotopy type as its medial axis , 2004, Comput. Aided Des..
[44] Kim Steenstrup Pedersen,et al. The Nonlinear Statistics of High-Contrast Patches in Natural Images , 2003, International Journal of Computer Vision.
[45] Afra Zomorodian,et al. Computing Persistent Homology , 2004, SCG '04.
[46] D. Theobald. short communications Acta Crystallographica Section A Foundations of , 2005 .
[47] Niklas Peinecke,et al. Laplace-spectra as fingerprints for shape matching , 2005, SPM '05.
[48] Abubakr Muhammad,et al. Coverage and hole-detection in sensor networks via homology , 2005, IPSN 2005. Fourth International Symposium on Information Processing in Sensor Networks, 2005..
[49] Sariel Har-Peled,et al. Fast construction of nets in low dimensional metrics, and their applications , 2004, SCG.
[50] Gary L. Miller,et al. Sparse Voronoi Refinement , 2006, IMR.
[51] W. Huisinga,et al. Metastability and Dominant Eigenvalues of Transfer Operators , 2006 .
[52] Marc E. Pfetsch,et al. Computing Optimal Morse Matchings , 2006, SIAM J. Discret. Math..
[53] Daniel Cremers,et al. Integral Invariants for Shape Matching , 2006, IEEE Transactions on Pattern Analysis and Machine Intelligence.
[54] A. O. Houcine. On hyperbolic groups , 2006 .
[55] A. Petrunin. Semiconcave Functions in Alexandrov???s Geometry , 2013, 1304.0292.
[56] Leonidas J. Guibas,et al. BIOINFORMATICS ORIGINAL PAPER doi:10.1093/bioinformatics/btm250 Structural bioinformatics Persistent voids: a new structural metric for membrane fusion , 2022 .
[57] W. M. Wood-Vasey,et al. SDSS-III: MASSIVE SPECTROSCOPIC SURVEYS OF THE DISTANT UNIVERSE, THE MILKY WAY, AND EXTRA-SOLAR PLANETARY SYSTEMS , 2011, 1101.1529.
[58] Raif M. Rustamov,et al. Laplace-Beltrami eigenfunctions for deformation invariant shape representation , 2007 .
[59] Afra Zomorodian,et al. Localized Homology , 2007, IEEE International Conference on Shape Modeling and Applications 2007 (SMI '07).
[60] Leonidas J. Guibas,et al. Reconstruction Using Witness Complexes , 2007, SODA '07.
[61] P. Massart,et al. Concentration inequalities and model selection , 2007 .
[62] Frédo Durand,et al. A Topological Approach to Hierarchical Segmentation using Mean Shift , 2007, 2007 IEEE Conference on Computer Vision and Pattern Recognition.
[63] R. Ghrist. Barcodes: The persistent topology of data , 2007 .
[64] Takeo Kanade,et al. Mode-seeking by Medoidshifts , 2007, 2007 IEEE 11th International Conference on Computer Vision.
[65] Facundo Mémoli,et al. Topological Methods for the Analysis of High Dimensional Data Sets and 3D Object Recognition , 2007, PBG@Eurographics.
[66] Ulrike von Luxburg,et al. A tutorial on spectral clustering , 2007, Stat. Comput..
[67] D. Ringach,et al. Topological analysis of population activity in visual cortex. , 2008, Journal of vision.
[68] H. Krause. Representations of quivers via reflection functors , 2008, 0804.1428.
[69] Stephen Smale,et al. Finding the Homology of Submanifolds with High Confidence from Random Samples , 2008, Discret. Comput. Geom..
[70] Gary L. Miller,et al. Linear-Size Meshes , 2008, CCCG.
[71] Stefano Soatto,et al. Quick Shift and Kernel Methods for Mode Seeking , 2008, ECCV.
[72] H. Edelsbrunner,et al. Homological illusions of persistence and stability , 2008 .
[73] Marian Mrozek,et al. Coreduction Homology Algorithm , 2009, Discret. Comput. Geom..
[74] Eric O. Postma,et al. Dimensionality Reduction: A Comparative Review , 2008 .
[75] Gary L. Miller,et al. Size complexity of volume meshes vs. surface meshes , 2009, SODA.
[76] David Cohen-Steiner,et al. Extending Persistence Using Poincaré and Lefschetz Duality , 2009, Found. Comput. Math..
[77] Danijela Horak,et al. Persistent homology of complex networks , 2008, 0811.2203.
[78] Steve Oudot,et al. Topological inference via meshing , 2010, SoCG '10.
[79] C. Pichon,et al. The persistent cosmic web and its filamentary structure II: Illustrations , 2010, 1009.4014.
[80] E. Coutsias,et al. Topology of cyclo-octane energy landscape. , 2010, The Journal of chemical physics.
[81] T. Sousbie. The persistent cosmic web and its filamentary structure I: Theory and implementation , 2010, 1009.4015.
[82] Jennifer Gamble,et al. Exploring uses of persistent homology for statistical analysis of landmark-based shape data , 2010, J. Multivar. Anal..
[83] Afra Zomorodian,et al. The tidy set: a minimal simplicial set for computing homology of clique complexes , 2010, SCG.
[84] S. Mukherjee,et al. Probability measures on the space of persistence diagrams , 2011 .
[85] G. Carlsson,et al. Topology based data analysis identifies a subgroup of breast cancers with a unique mutational profile and excellent survival , 2011, Proceedings of the National Academy of Sciences.
[86] Martin Hilbert,et al. The World’s Technological Capacity to Store, Communicate, and Compute Information , 2011, Science.
[87] Primoz Skraba,et al. Zigzag persistent homology in matrix multiplication time , 2011, SoCG '11.
[88] Leonidas J. Guibas,et al. Witnessed k-Distance , 2011, Discrete & Computational Geometry.
[89] M. Liebeck,et al. Unipotent and Nilpotent Classes in Simple Algebraic Groups and Lie Algebras , 2012 .
[90] Jianzhong Wang,et al. Geometric Structure of High-Dimensional Data and Dimensionality Reduction , 2012 .
[91] Don Sheehy,et al. Linear-Size Approximations to the Vietoris–Rips Filtration , 2012, Discrete & Computational Geometry.
[92] G. Heo,et al. Topological Analysis of Variance and the Maxillary Complex , 2012 .
[93] Quentin Mérigot. Lower bounds for k-distance approximation , 2013, SoCG '13.
[94] H. Ombao,et al. Persistence Landscape of Functional Signal and Its Application to Epileptic Electroencaphalogram Data , 2013 .
[95] F. Oggier,et al. An Introduction to Central Simple Algebras and Their Applications to Wireless Communication , 2013 .
[96] Francesco Vaccarino,et al. Topological Strata of Weighted Complex Networks , 2013, PloS one.
[97] Steve Oudot,et al. Zigzag zoology: rips zigzags for homology inference , 2013, SoCG '13.
[98] M. Kramár,et al. Persistence of force networks in compressed granular media. , 2013, Physical review. E, Statistical, nonlinear, and soft matter physics.
[99] Kevin J. Emmett,et al. Characterizing Scales of Genetic Recombination and Antibiotic Resistance in Pathogenic Bacteria Using Topological Data Analysis , 2014, Brain Informatics and Health.
[100] Jure Leskovec,et al. {SNAP Datasets}: {Stanford} Large Network Dataset Collection , 2014 .
[101] Robert Ghrist,et al. Elementary Applied Topology , 2014 .
[102] Sayan Mukherjee,et al. Fréchet Means for Distributions of Persistence Diagrams , 2012, Discrete & Computational Geometry.
[103] Don Sheehy,et al. The Persistent Homology of Distance Functions under Random Projection , 2014, SoCG.
[104] Ulrich Bauer,et al. A stable multi-scale kernel for topological machine learning , 2014, 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).
[105] M. Gameiro,et al. A topological measurement of protein compressibility , 2014, Japan Journal of Industrial and Applied Mathematics.
[106] Michael Lesnick,et al. The Theory of the Interleaving Distance on Multidimensional Persistence Modules , 2011, Found. Comput. Math..
[107] Steve Oudot,et al. Zigzag Persistence via Reflections and Transpositions , 2015, SODA.
[108] Mark W. Johnson,et al. A Foundation for Props, Algebras, and Modules , 2015 .
[109] Emerson G. Escolar,et al. Persistence Modules on Commutative Ladders of Finite Type , 2014, Discret. Comput. Geom..
[110] Yi Zheng,et al. Relation between total variation and persistence distance and its application in signal processing , 2016, Adv. Comput. Math..
[111] R. Ho. Algebraic Topology , 2022 .