Tidal resonance in icy satellites with subsurface oceans

Tidal dissipation is a major heat source for the icy satellites of the giant planets. Several icy satellites likely possess a subsurface ocean underneath an ice shell. Previous studies of tidal dissipation on icy satellites, however, have either assumed a static ocean or ignored the effect of the ice lid on subsurface ocean dynamics. In this study, we examine inertial effects on tidal deformation of satellites with a dynamic ocean overlain by an ice lid based on viscoelasto-gravitational theory. Although ocean dynamics is treated in a simplified fashion, we find a resonant configuration when the phase velocity of ocean gravity waves is similar to that of the tidal bulge. This condition is achieved when a subsurface ocean is thin (<1 km). The enhanced deformation (increased h2 and k2 Love numbers) near the resonant configuration would lead to enhanced tidal heating in the solid lid. A static ocean formulation gives an accurate result only if the ocean thickness is much larger than the resonant thickness. The resonant configuration strongly depends on the properties of the shell, demonstrating the importance of the presence of a shell on tidal dissipation.

[1]  M. Beuthe Tidal Love numbers of membrane worlds: Europa, Titan, and Co. , 2015, 1504.04574.

[2]  R. Tyler Strong ocean tidal flow and heating on moons of the outer planets , 2008, Nature.

[3]  H. Zebker,et al.  A rigid and weathered ice shell on Titan , 2013, Nature.

[4]  R. Tyler Tidal dynamical considerations constrain the state of an ocean on Enceladus , 2011 .

[5]  S. Charnoz,et al.  Constraints on Mimas’ interior from Cassini ISS libration measurements , 2014, Science.

[6]  M. Saito SOME PROBLEMS OF STATIC DEFORMATION OF THE EARTH , 1974 .

[7]  Gabriel Tobie,et al.  Solid tidal friction above a liquid water reservoir as the origin of the south pole hotspot on Enceladus , 2008 .

[8]  M. Kivelson,et al.  The Permanent and Inductive Magnetic Moments of Ganymede , 2002 .

[9]  Paul Duval,et al.  Creep and Fracture of Ice: Acknowledgements , 2009 .

[10]  Shijie Zhong,et al.  The effects of laterally varying icy shell structure on the tidal response of Ganymede and Europa , 2014 .

[11]  Z. Alterman,et al.  Oscillations of the earth , 1959, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[12]  G. Tobie,et al.  Tidally-induced melting events as the origin of south-pole activity on Enceladus , 2012 .

[13]  G. Collins,et al.  Tectonic activity on Pluto after the Charon-forming impact , 2014, 1403.6377.

[14]  Tilman Spohn,et al.  Thermal histories, compositions and internal structures of the moons of the solar system , 1986 .

[15]  S. W. Asmar,et al.  The Gravity Field and Interior Structure of Enceladus , 2014, Science.

[16]  J. Haruyama,et al.  Strong tidal heating in an ultralow-viscosity zone at the core–mantle boundary of the Moon , 2014 .

[17]  S. Asmar,et al.  The Tides of Titan , 2012, Science.

[18]  B. Vermeersen,et al.  Global Dynamics of the Earth , 2004 .

[19]  I. Matsuyama Tidal dissipation in the oceans of icy satellites , 2014 .

[20]  B. Vermeersen,et al.  Effects of low-viscous layers and a non-zero obliquity on surface stresses induced by diurnal tides and non-synchronous rotation: The case of Europa , 2011 .

[21]  M. Beuthe Tides on Europa: The membrane paradigm , 2014, 1410.4735.

[22]  C. Russell,et al.  Galileo magnetometer measurements: a stronger case for a subsurface ocean at Europa. , 2000, Science.

[23]  J. H. Roberts,et al.  Long-Term Stability of a Subsurface Ocean on Enceladus , 2007 .

[24]  J. Wahr,et al.  Computations of the viscoelastic response of a 3-D compressible Earth to surface loading: an application to Glacial Isostatic Adjustment in Antarctica and Canada , 2012 .

[25]  D. Stevenson Constraints on Tidal Heating in Enceladus , 2008 .

[26]  G. Schubert,et al.  The tidal response of Ganymede and Callisto with and without liquid water oceans , 2003 .

[27]  J. D. Anderson,et al.  Gravitational constraints on the internal structure of Ganymede , 1996, Nature.

[28]  C. Sotin,et al.  Evolution of Icy Satellites , 2010 .

[29]  V. Dehant,et al.  Tidally induced surface displacements, external potential variations, and gravity variations on Mars , 2003 .

[30]  C. Sotin,et al.  Interiors and Evolution of Icy Satellites , 2015 .

[31]  H. Hussmann 10.15 – Interiors and Evolution of Icy Satellites , 2007 .

[32]  H. Hussmann,et al.  Non-steady state tidal heating of Enceladus , 2014 .

[33]  G. Schubert,et al.  The Tidal Response of Europa , 2000 .

[34]  H. Takeuchi,et al.  Seismic Surface Waves , 1972 .

[35]  G. Glatzmaier,et al.  Tidal heating in icy satellite oceans , 2014 .

[36]  Paul D. Feldman,et al.  The search for a subsurface ocean in Ganymede with Hubble Space Telescope observations of its auroral ovals , 2015 .

[37]  Gabriel Tobie,et al.  Tidal dissipation within large icy satellites: Applications to Europa and Titan , 2005 .

[38]  P. Thomas,et al.  The global shape of Europa: Constraints on lateral shell thickness variations , 2007 .

[39]  Francis Nimmo,et al.  Thermal evolution of Pluto and implications for surface tectonics and a subsurface ocean , 2011 .