Parametric optimization for optimal synthesis of robotic systems motions

This paper presents how a problem of optimal trajectory planning, that is an optimal control problem, can be transformed into a parametric optimization problem and in consequence be tackled using efficient deterministic or stochastic parametric optimization techniques. The transformation is done thanks to discretizing some or all continuous system’s variables and forming their time-histories by interpolation. We will discuss three different methods where, in addition to transfer time T, considered optimization parameters are: 1) independent state and control parameters, 2) control parameters and 3) independent position parameters. The simplicity and the efficiency of the third mode allow us to use it to solve the problem of optimal trajectory planning in complex situations, in particular for holonomic and nonholonomic systems.

[1]  Frank Chongwoo Park,et al.  Optimal robot motions for physical criteria , 2001, J. Field Robotics.

[2]  D. Hull Conversion of optimal control problems into parameter optimization problems , 1996 .

[3]  Oskar von Stryk,et al.  Direct and indirect methods for trajectory optimization , 1992, Ann. Oper. Res..

[4]  Motoji Yamamoto,et al.  Quasi-time-optimal motion planning of mobile platforms in the presence of obstacles , 1999, Proceedings 1999 IEEE International Conference on Robotics and Automation (Cat. No.99CH36288C).

[5]  J. Betts Survey of Numerical Methods for Trajectory Optimization , 1998 .

[6]  Taha Chettibi,et al.  A Stochastic Off Line Planner of Optimal Dynamic Motions for Robotic Manipulators , 2004, ICINCO.

[7]  T. Chettibi,et al.  A NEW APPROACH FOR MINIMUM TIME MOTION PLANNING PROBLEM OF WHEELED MOBILE ROBOTS , 2005 .

[8]  G. Reinelt,et al.  Fast Recursive SQP MethodsforLarge-Scale Optimal Control Problems , 1995 .

[9]  Jorge Angeles,et al.  Fundamentals of Robotic Mechanical Systems: Theory, Methods, and Algorithms , 1995 .

[10]  A. Bicchi,et al.  Randomized parallel simulation of constrained multibody systems for VR/haptic applications , 2001, Proceedings 2001 ICRA. IEEE International Conference on Robotics and Automation (Cat. No.01CH37164).

[11]  Nouvelle approche de commande optimale en temps final libre et construction d'algorythmes de commande de systèmes articulés , 1996 .

[12]  O. V. Stryk,et al.  Numerical Solution of Optimal Control Problems by Direct Collocation , 1993 .

[13]  Lino Guzzella,et al.  Time-optimal motions of robots in assembly tasks , 1985, 1985 24th IEEE Conference on Decision and Control.

[14]  Yaobin Chen,et al.  A proof of the structure of the minimum-time control law of robotic manipulators using a Hamiltonian formulation , 1990, IEEE Trans. Robotics Autom..

[15]  Guy Bessonnet Optimisation dynamique des mouvements point à point de robots manipulateurs , 1992 .