Improved Compact Routing Scheme for Chordal Graphs

This paper concerns routing with succinct tables in chordal graphs. We show how to construct in polynomial time, for every n-node chordal graph, a routing scheme using routing tables and addresses of O(log3 n/ log log n) bits per node, and O(log2 n/ log log n) bit not alterable headers such that the length of the route between any two nodes is at most the distance between the nodes in the graph plus two.

[1]  Greg N. Frederickson,et al.  Space-Efficient Message Routing in c-Decomposable Networks , 1990, SIAM J. Comput..

[2]  Stéphane Pérennes,et al.  Memory requirement for routing in distributed networks , 1996, PODC '96.

[3]  Cyril Gavoille,et al.  Routing in distributed networks: overview and open problems , 2001, SIGA.

[4]  Hsueh-I Lu Improved Compact Routing Tables for Planar Networks via Orderly Spanning Trees , 2002, COCOON.

[5]  Haim Kaplan,et al.  Short and Simple Labels for Small Distances and Other Functions , 2001, WADS.

[6]  Stephen Alstrup,et al.  Improved labeling scheme for ancestor queries , 2002, SODA '02.

[7]  David Peleg,et al.  Approximate Distance Labeling Schemes , 2001, ESA.

[8]  Pierre Fraigniaud,et al.  Routing in Trees , 2001, ICALP.

[9]  Yon Dourisboure,et al.  An Additive Stretched Routing Scheme for Chordal Graphs , 2002, WG.

[10]  Jose Augusto Ramos Soares,et al.  Graph Spanners: a Survey , 1992 .

[11]  Eli Upfal,et al.  A trade-off between space and efficiency for routing tables , 1989, JACM.

[12]  Mikkel Thorup,et al.  Compact routing schemes , 2001, SPAA '01.

[13]  David Peleg Informative Labeling Schemes for Graphs , 2000, MFCS.

[14]  Mikkel Thorup,et al.  Compact oracles for reachability and approximate distances in planar digraphs , 2001, Proceedings 2001 IEEE International Conference on Cluster Computing.

[15]  Cyril Gavoille,et al.  Space-Efficiency for Routing Schemes of Stretch Factor Three , 2001, J. Parallel Distributed Comput..

[16]  Baruch Awerbuch,et al.  Improved Routing Strategies with Succinct Tables , 1990, J. Algorithms.

[17]  B. A. Reed,et al.  Algorithmic Aspects of Tree Width , 2003 .

[18]  F. Leighton,et al.  Introduction to Parallel Algorithms and Architectures: Arrays, Trees, Hypercubes , 1991 .

[19]  Baruch Awerbuch,et al.  Sparse partitions , 1990, Proceedings [1990] 31st Annual Symposium on Foundations of Computer Science.

[20]  Cyril Gavoille,et al.  Compact Routing Tables for Graphs of Bounded Genus , 1999, ICALP.

[21]  Paul D. Seymour,et al.  Graph Minors: XV. Giant Steps , 1996, J. Comb. Theory, Ser. B.

[22]  David Peleg,et al.  Distributed Computing: A Locality-Sensitive Approach , 1987 .

[23]  Erich Prisner Distance Approximating Spanning Trees , 1997, STACS.

[24]  Baruch Awerbuch,et al.  Compact distributed data structures for adaptive routing , 1989, STOC '89.

[25]  Greg N. Frederickson,et al.  Efficient Message Routing in Planar Networks , 1989, SIAM J. Comput..

[26]  Paul D. Seymour,et al.  Graph Minors. II. Algorithmic Aspects of Tree-Width , 1986, J. Algorithms.

[27]  Feodor F. Dragan,et al.  Distance Approximating Trees for Chordal and Dually Chordal Graphs , 1999, J. Algorithms.

[28]  Naomi Nishimura,et al.  Interval Routing on k-Trees , 1998, J. Algorithms.

[29]  Haim Kaplan,et al.  A comparison of labeling schemes for ancestor queries , 2002, SODA '02.

[30]  Pierre Fraigniaud,et al.  Universal routing schemes , 1997, Distributed Computing.

[31]  Baruch Awerbuch,et al.  Routing with Polynomial Communication-Space Trade-Off , 1992, SIAM J. Discret. Math..