LTL's Intuitive Representations and its Automaton Translation

Compared with other verification methods, to some sense, model checking can be thought of as more attractive method to test hardware and software systems due to its automatic features. However, a stumbling problem is how to supply correct formal properties in logic to do model checking by system designers without specific mathematical background. This paper first presents two intuittive representations for the LTL formulas: one is graphical automaton-like; the other is textual regular-expression-like and then shows how these representations can be used to construct Buchi automata for LTL model checking.

[1]  George S. Avrunin,et al.  Patterns in property specifications for finite-state verification , 1999, Proceedings of the 1999 International Conference on Software Engineering (IEEE Cat. No.99CB37002).

[2]  Xavier Thirioux Simple and Efficient Translation from LTL Formulas to Buchi Automata , 2002, Electron. Notes Theor. Comput. Sci..

[3]  Kousha Etessami,et al.  Events and constraints: a graphical editor for capturing logic requirements of programs , 2001, Proceedings Fifth IEEE International Symposium on Requirements Engineering.

[4]  Edmund M. Clarke,et al.  Model Checking , 1999, Handbook of Automated Reasoning.

[5]  Louise E. Moser,et al.  A graphical interval logic for specifying concurrent systems , 1994, TSEM.

[6]  Paul Gastin,et al.  Fast LTL to Büchi Automata Translation , 2001, CAV.

[7]  George S. Avrunin,et al.  Automated Analysis of Concurrent Systems With the Constrained Expression Toolset , 1991, IEEE Trans. Software Eng..

[8]  Ilan Beer,et al.  On-the-Fly Model Checking of RCTL Formulas , 1998, CAV.

[9]  Pierre Wolper,et al.  Simple on-the-fly automatic verification of linear temporal logic , 1995, PSTV.

[10]  Yuhong Zhao Intuitive Representations for Temporal Logic Formulas , 2003, FDL.

[11]  Edmund M. Clarke,et al.  Expressibility results for linear-time and branching-time logics , 1988, REX Workshop.

[12]  James C. Corbett,et al.  A Language Framework for Expressing Checkable Properties of Dynamic Software , 2000, SPIN.

[13]  Amir Pnueli The Temporal Semantics of Concurrent Programs , 1981, Theor. Comput. Sci..

[14]  W. Damm,et al.  Specification and verification of system-level hardware designs using time diagrams , 1993, 1993 European Conference on Design Automation with the European Event in ASIC Design.

[15]  Fausto Giunchiglia,et al.  Improved Automata Generation for Linear Temporal Logic , 1999, CAV.

[16]  Fabio Somenzi,et al.  Efficient Büchi Automata from LTL Formulae , 2000, CAV.

[17]  Jeffrey D. Ullman,et al.  Introduction to automata theory, languages, and computation, 2nd edition , 2001, SIGA.

[18]  Dimitra Giannakopoulou,et al.  From States to Transitions: Improving Translation of LTL Formulae to Büchi Automata , 2002, FORTE.

[19]  Carsten Fritz,et al.  Constructing Büchi Automata from Linear Temporal Logic Using Simulation Relations for Alternating Büchi Automata , 2003, CIAA.