Efficient source decoding over memoryless noisy channels using higher order Markov models

Exploiting the residual redundancy in a source coder output stream during the decoding process has been proven to be a bandwidth-efficient way to combat noisy channel degradations. This redundancy can be employed to either assist the channel decoder for improved performance or design better source decoders. In this work, a family of solutions for the asymptotically optimum minimum mean-squared error (MMSE) reconstruction of a source over memoryless noisy channels is presented when the redundancy in the source encoder output stream is exploited in the form of a /spl gamma/-order Markov model (/spl gamma//spl ges/1) and a delay of /spl delta/,/spl delta/>0, is allowed in the decoding process. It is demonstrated that the proposed solutions provide a wealth of tradeoffs between computational complexity and the memory requirements. A simplified MMSE decoder which is optimized to minimize the computational complexity is also presented. Considering the same problem setup, several other maximum a posteriori probability (MAP) symbol and sequence decoders are presented as well. Numerical results are presented which demonstrate the efficiency of the proposed algorithms.

[1]  Nariman Farvardin,et al.  On the performance and complexity of channel-optimized vector quantizers , 1991, IEEE Trans. Inf. Theory.

[2]  Nam C. Phamdo,et al.  Optimal detection of discrete Markov sources over discrete memoryless channels - applications to combined source-channel coding , 1994, IEEE Trans. Inf. Theory.

[3]  Robert M. Gray,et al.  Joint source and noisy channel trellis encoding , 1981, IEEE Trans. Inf. Theory.

[4]  Amir K. Khandani,et al.  Approximating and exploiting the residual redundancies-applications to efficient reconstruction of speech over noisy channels , 2001, 2001 IEEE International Conference on Acoustics, Speech, and Signal Processing. Proceedings (Cat. No.01CH37221).

[5]  Kenneth Zeger,et al.  Performance of quantizers on noisy channels using structured families of codes , 1999, Proceedings DCC'99 Data Compression Conference (Cat. No. PR00096).

[6]  P. Wintz,et al.  Quantizing for Noisy Channels , 1969 .

[7]  Peter Vary,et al.  Error concealment by near optimum MMSE-estimation of source codec parameters , 2000, 2000 IEEE Workshop on Speech Coding. Proceedings. Meeting the Challenges of the New Millennium (Cat. No.00EX421).

[8]  Ezio Biglieri,et al.  Joint source and channel coding using turbo codes over rings , 1998, IEEE Trans. Commun..

[9]  Kenneth Rose,et al.  Unequally protected multistage vector quantization for time-varying CDMA channels , 2001, IEEE Trans. Commun..

[10]  Maja Bystrom,et al.  Combined source-channel coding schemes for video transmission over an additive white Gaussian noise channel , 2000, IEEE Journal on Selected Areas in Communications.

[11]  Thomas Fuja,et al.  Robust transmission of MELP-compressed speech: an illustrative example of joint source-channel decoding , 2003, IEEE Trans. Commun..

[12]  Fady Alajaji,et al.  Quantization of memoryless and Gauss-Markov sources over binary Markov channels , 1997, IEEE Trans. Commun..

[13]  Kuldip K. Paliwal,et al.  Speech Coding and Synthesis , 1995 .

[14]  X. Jin Factor graphs and the Sum-Product Algorithm , 2002 .

[15]  C. E. SHANNON,et al.  A mathematical theory of communication , 1948, MOCO.

[16]  David G. Daut,et al.  Combined Source-Channel Coding of Images Using the Block Cosine Transform , 1981, IEEE Trans. Commun..

[17]  Peter Vary,et al.  Softbit speech decoding: a new approach to error concealment , 2001, IEEE Trans. Speech Audio Process..

[18]  Samir Kallel,et al.  Optimal use of Markov models for DPCM picture transmission over noisy channels , 2000, IEEE Trans. Commun..

[19]  Mikael Skoglund,et al.  Theory for transmission of vector quantization data , 1995 .

[20]  John Cocke,et al.  Optimal decoding of linear codes for minimizing symbol error rate (Corresp.) , 1974, IEEE Trans. Inf. Theory.

[21]  Fady Alajaji,et al.  Soft-decision COVQ for turbo-coded AWGN and Rayleigh fading channels , 2001, IEEE Communications Letters.

[22]  Venceslav Kafedziski,et al.  Vector quantization over Gaussian channels with memory , 1995, Proceedings IEEE International Conference on Communications ICC '95.

[23]  Peter Vary,et al.  Iterative source-channel decoder using extrinsic information from softbit-source decoding , 2001, 2001 IEEE International Conference on Acoustics, Speech, and Signal Processing. Proceedings (Cat. No.01CH37221).

[24]  Robert M. Gray,et al.  An Algorithm for Vector Quantizer Design , 1980, IEEE Trans. Commun..

[25]  Mikael Skoglund,et al.  Vector quantization for speech transmission , 1995 .

[26]  T.E. Fuja,et al.  Channel codes that exploit the residual redundancy in CELP-encoded speech , 1996, IEEE Trans. Speech Audio Process..

[27]  Jerry D. Gibson,et al.  Self-Orthogonal Convolutional Coding for the DPCM-AQB Speech Encoder , 1984, IEEE Trans. Commun..

[28]  Kannan Ramchandran,et al.  Robust image transmission over energy-constrained time-varying channels using multiresolution joint source-channel coding , 1998, IEEE Trans. Signal Process..

[29]  Farshad Lahouti,et al.  Quantization and Reconstruction of Sources with Memory , 2002 .

[30]  Scott L. Miller,et al.  DPCM picture transmission over noisy channels with the aid of a Markov model , 1995, IEEE Trans. Image Process..

[31]  Claude E. Shannon,et al.  A Mathematical Theory of Communications , 1948 .

[32]  Robert M. Gray,et al.  The design of joint source and channel trellis waveform coders , 1987, IEEE Trans. Inf. Theory.

[33]  F. Lahouti,et al.  AN EFFICIENT MMSE SOURCE DECODER FOR NOISY CHANNELS , 2001 .

[34]  David L. Neuhoff,et al.  Quantization , 2022, IEEE Trans. Inf. Theory.

[35]  Ke-Yen Chang,et al.  Analysis, Optimization, and Sensitivity Study of Differential PCM Systems Operating on Noisy Communication Channels , 1972, IEEE Trans. Commun..

[36]  C.-E. Sundberg The Effect of Single Bit Errors in Standard Nonlinear PCM Systems , 1976, IEEE Trans. Commun..

[37]  David J. Miller,et al.  A sequence-based approximate MMSE decoder for source coding over noisy channels using discrete hidden Markov models , 1998, IEEE Trans. Commun..

[38]  Hamid Jafarkhani,et al.  Design of channel-optimized vector quantizers in the presence of channel mismatch , 2000, IEEE Trans. Commun..

[39]  Nariman Farvardin,et al.  Joint design of block source codes and modulation signal sets , 1992, IEEE Trans. Inf. Theory.

[40]  N. Gortz On the iterative approximation of optimal joint source-channel decoding , 2001 .

[41]  Nariman Farvardin,et al.  Scalar quantization of memoryless sources over memoryless channels using rate-one convolutional codes , 1994, Proceedings of 1994 IEEE International Symposium on Information Theory.

[42]  Mikael Skoglund,et al.  Soft Decoding for Vector Quantization Over Noisy Channels with Memory , 1999, IEEE Trans. Inf. Theory.

[43]  K. Zeger,et al.  Tradeoff between source and channel coding , 1997, Proceedings of IEEE International Symposium on Information Theory.

[44]  Tim Fingscheidt,et al.  Joint source-channel (de-)coding for mobile communications , 2002, IEEE Trans. Commun..

[45]  Joachim Hagenauer,et al.  Source-controlled channel decoding , 1994, Proceedings of 1994 IEEE International Symposium on Information Theory.

[46]  Masao Kasahara,et al.  A construction of vector quantizers for noisy channels , 1984 .

[47]  N. Phamdo,et al.  Optimal Detection of Discrete Markov Sources Over Discrete Memoryless Channels - Applications to Combined Source-Channel Coding , 1993, Proceedings. IEEE International Symposium on Information Theory.

[48]  Tim Fingscheidt,et al.  Combined source/channel (de-)coding: can a priori information be used twice? , 2000, 2000 IEEE International Conference on Communications. ICC 2000. Global Convergence Through Communications. Conference Record.

[49]  F. Lahouti,et al.  Sequence MMSE Source Decoding Over Noisy Channels Using the Residual Redundancies , 2001 .

[50]  Khalid Sayood,et al.  Use of residual redundancy in the design of joint source/channel coders , 1991, IEEE Trans. Commun..

[51]  Jerry D. Gibson,et al.  A constrained joint source/channel coder design , 1994, IEEE J. Sel. Areas Commun..

[52]  Mikael O. Skogland Bit-estimate based decoding for vector quantization over noisy channels with intersymbol interference , 2000, IEEE Trans. Commun..