Extending the Absorption Spectra and Enhancing the Charge Extraction by the Organic Bulk Heterojunction for CsPbBr3 Perovskite Solar Cells

[1]  W. Ma,et al.  Realizing 19.05% Efficiency Polymer Solar Cells by Progressively Improving Charge Extraction and Suppressing Charge Recombination , 2022, Advanced materials.

[2]  X. Tao,et al.  Engineering the Hole Extraction Interface Enables Single‐Crystal MAPbI3 Perovskite Solar Cells with Efficiency Exceeding 22% and Superior Indoor Response , 2021, Advanced Energy Materials.

[3]  Q. Tang,et al.  Tailored Lattice “Tape” to Confine Tensile Interface for 11.08%‐Efficiency All‐Inorganic CsPbBr3 Perovskite Solar Cell with an Ultrahigh Voltage of 1.702 V , 2021, Advanced science.

[4]  Fuzhi Huang,et al.  Groups-dependent phosphines as the organic redox for point defects elimination in hybrid perovskite solar cells , 2020, Journal of Energy Chemistry.

[5]  C. Brabec,et al.  Inorganic Halide Perovskite Solar Cells: Progress and Challenges , 2020, Advanced Energy Materials.

[6]  M. Thelakkat,et al.  Role of PCBM in the Suppression of Hysteresis in Perovskite Solar Cells , 2020, Advanced Functional Materials.

[7]  Yang Yang,et al.  Constructive molecular configurations for surface-defect passivation of perovskite photovoltaics , 2019, Science.

[8]  Q. Tang,et al.  Hole Boosted Cu(Cr,M)O2 Nanocrystals for All-Inorganic CsPbBr3 Perovskite Solar Cells. , 2019, Angewandte Chemie.

[9]  Feng Gao,et al.  Planar perovskite solar cells with long-term stability using ionic liquid additives , 2019, Nature.

[10]  Bryon W. Larson,et al.  Self-Seeding Growth for Perovskite Solar Cells with Enhanced Stability , 2019, Joule.

[11]  V. Bulović,et al.  Scalable Deposition Methods for Large‐area Production of Perovskite Thin Films , 2019, ENERGY & ENVIRONMENTAL MATERIALS.

[12]  Joydeep Munshi,et al.  Solution Processing Dependent Bulk Heterojunction Nanomorphology of P3HT/PCBM Thin Films. , 2019, ACS applied materials & interfaces.

[13]  Yang Yang,et al.  Supersymmetric laser arrays , 2019, Nature Photonics.

[14]  Tae Joo Shin,et al.  Efficient, stable and scalable perovskite solar cells using poly(3-hexylthiophene) , 2019, Nature.

[15]  Dapeng Yu,et al.  Stability Challenges for Perovskite Solar Cells , 2019, ChemNanoMat.

[16]  T. Hayat,et al.  Enhancing charge transport in an organic photoactive layer via vertical component engineering for efficient perovskite/organic integrated solar cells. , 2019, Nanoscale.

[17]  Yongsheng Chen,et al.  Integrated Perovskite/Bulk‐Heterojunction Organic Solar Cells , 2019, Advanced materials.

[18]  Q. Wang,et al.  NbF5: A Novel α‐Phase Stabilizer for FA‐Based Perovskite Solar Cells with High Efficiency , 2019, Advanced Functional Materials.

[19]  Ranbir Singh,et al.  ITIC-based bulk heterojunction perovskite film boosting the power conversion efficiency and stability of the perovskite solar cell , 2019, Solar Energy.

[20]  Huicong Liu,et al.  Growing high-quality CsPbBr3 by using porous CsPb2Br5 as an intermediate: a promising light absorber in carbon-based perovskite solar cells , 2019, Sustainable Energy & Fuels.

[21]  J. Luther,et al.  Operation Mechanism of Perovskite Quantum Dot Solar Cells Probed by Impedance Spectroscopy , 2018, ACS Energy Letters.

[22]  Jinsong Huang,et al.  Dual Functions of Crystallization Control and Defect Passivation Enabled by Sulfonic Zwitterions for Stable and Efficient Perovskite Solar Cells , 2018, Advanced materials.

[23]  A. Barker,et al.  Iodine chemistry determines the defect tolerance of lead-halide perovskites , 2018 .

[24]  Xiaopeng Han,et al.  Elegant Face-Down Liquid-Space-Restricted Deposition of CsPbBr3 Films for Efficient Carbon-Based All-Inorganic Planar Perovskite Solar Cells. , 2018, ACS applied materials & interfaces.

[25]  Tielin Shi,et al.  Efficient Carbon-Based CsPbBr3 Inorganic Perovskite Solar Cells by Using Cu-Phthalocyanine as Hole Transport Material , 2018, Nano-Micro Letters.

[26]  A. Jen,et al.  Highly Efficient Porphyrin‐Based OPV/Perovskite Hybrid Solar Cells with Extended Photoresponse and High Fill Factor , 2017, Advanced materials.

[27]  Mingkui Wang,et al.  A New Method for Fitting Current–Voltage Curves of Planar Heterojunction Perovskite Solar Cells , 2017, Nano-Micro Letters.

[28]  Zhong Jin,et al.  All‐Inorganic Halide Perovskites for Optoelectronics: Progress and Prospects , 2017 .

[29]  R. Datta,et al.  Molybdenum Oxides – From Fundamentals to Functionality , 2017, Advanced materials.

[30]  D. Bradley,et al.  Thickness Effect of Bulk Heterojunction Layers on the Performance and Stability of Polymer:Fullerene Solar Cells with Alkylthiothiophene-Containing Polymer , 2017 .

[31]  Yang Yang,et al.  Unraveling the High Open Circuit Voltage and High Performance of Integrated Perovskite/Organic Bulk-Heterojunction Solar Cells. , 2017, Nano letters.

[32]  Hang Hu,et al.  Low-toxic metal halide perovskites: opportunities and future challenges , 2017 .

[33]  C. B. Nielsen,et al.  Highly efficient perovskite solar cells with crosslinked PCBM interlayers , 2017 .

[34]  E. Diau Next-Generation Solar Cells and Conversion of Solar Energy , 2017 .

[35]  T. Emrick,et al.  High Efficiency Tandem Thin-Perovskite/Polymer Solar Cells with a Graded Recombination Layer. , 2016, ACS applied materials & interfaces.

[36]  David Cahen,et al.  Cesium Enhances Long-Term Stability of Lead Bromide Perovskite-Based Solar Cells. , 2015, The journal of physical chemistry letters.

[37]  Wei Chen,et al.  Efficient and stable large-area perovskite solar cells with inorganic charge extraction layers , 2015, Science.

[38]  Xueyan Wang,et al.  Polyelectrolyte based hole-transporting materials for high performance solution processed planar perovskite solar cells , 2015 .

[39]  David Cahen,et al.  How Important Is the Organic Part of Lead Halide Perovskite Photovoltaic Cells? Efficient CsPbBr3 Cells. , 2015, The journal of physical chemistry letters.

[40]  Yang Yang,et al.  Perovskite/polymer monolithic hybrid tandem solar cells utilizing a low-temperature, full solution process , 2015 .

[41]  Yaoguang Rong,et al.  Hole-Conductor-Free Mesoscopic TiO2/CH3NH3PbI3 Heterojunction Solar Cells Based on Anatase Nanosheets and Carbon Counter Electrodes. , 2014, The journal of physical chemistry letters.

[42]  Yongsup Park,et al.  Energy level alignment in polymer organic solar cells at donor-acceptor planar junction formed by electrospray vacuum deposition , 2014 .

[43]  M. Grätzel,et al.  Title: Long-Range Balanced Electron and Hole Transport Lengths in Organic-Inorganic CH3NH3PbI3 , 2017 .

[44]  Chih‐I Wu,et al.  Investigations of efficiency improvements in poly(3-hexylthiophene) based organic solar cells using calcium cathodes , 2011 .

[45]  Thuc‐Quyen Nguyen,et al.  Organic Electronics: Improved Performance of Polymer Bulk Heterojunction Solar Cells Through the Reduction of Phase Separation via Solvent Additives (Adv. Mater. 8/2010) , 2010 .

[46]  Xiong Gong,et al.  Thermally Stable, Efficient Polymer Solar Cells with Nanoscale Control of the Interpenetrating Network Morphology , 2005 .

[47]  Vishal Shrotriya,et al.  Absorption spectra modification in poly(3-hexylthiophene):methanofullerene blend thin films , 2005 .

[48]  Vladimir Dyakonov,et al.  Influence of nanomorphology on the photovoltaic action of polymer–fullerene composites , 2004 .