Using artificial neural networks for temporal and spatial wind speed forecasting in Iran

[1]  R. Vautard,et al.  A numerical approach for planning offshore wind farms from regional to local scales over the Mediterranean , 2016 .

[2]  Manuel Welsch,et al.  Assessing the technical wind energy potential in Africa a GIS-based approach , 2015 .

[3]  A. Immanuel Selvakumar,et al.  Wind resource estimation using wind speed and power curve models , 2015 .

[4]  Luca Delle Monache,et al.  Comparison of numerical weather prediction based deterministic and probabilistic wind resource assessment methods , 2015 .

[5]  Mehrdad Abedi,et al.  A new method to adequate assessment of wind farms’ power output , 2015 .

[6]  Rasit Ata,et al.  Artificial neural networks applications in wind energy systems: a review , 2015 .

[7]  F. Gonzalez-Longatt,et al.  Spatial interpolation and orographic correction to estimate wind energy resource in Venezuela , 2015 .

[8]  S. Al-Yahyai,et al.  Assessment of large-scale wind energy potential in the emerging city of Duqm (Oman) , 2015 .

[9]  David Hanslian,et al.  Combining the VAS 3D interpolation method and Wind Atlas methodology to produce a high-resolution wind resource map for the Czech Republic , 2015 .

[10]  M. Rosen,et al.  Assessment of wind energy potential and economics in the north-western Iranian cities of Tabriz and Ardabil , 2015 .

[11]  Osamah Basheer Shukur,et al.  Daily wind speed forecasting through hybrid KF-ANN model based on ARIMA , 2015 .

[12]  S. H. Pishgar-Komleh,et al.  Wind speed and power density analysis based on Weibull and Rayleigh distributions (a case study: Firouzkooh county of Iran) , 2015 .

[13]  Mark Beale,et al.  Neural Network Toolbox™ User's Guide , 2015 .

[14]  Alfred Baghramian,et al.  A novel heuristic method for wind farm power prediction: A case study , 2014 .

[15]  Bri-Mathias Hodge,et al.  A hybrid measure-correlate-predict method for long-term wind condition assessment , 2014 .

[16]  Achille Messac,et al.  A comprehensive measure of the energy resource: Wind power potential (WPP) , 2014 .

[17]  Mojtaba Nedaei,et al.  An extensive evaluation of wind resource using new methods and strategies for development and utilizing wind power in Mah-shahr station in Iran , 2014 .

[18]  A. Hahmann,et al.  The wind energy potential of Iceland , 2014 .

[19]  Kasra Mohammadi,et al.  Assessment of solar and wind energy potentials for three free economic and industrial zones of Iran , 2014 .

[20]  A. Tizpar,et al.  Wind resource assessment and wind power potential of Mil-E Nader region in Sistan and Baluchestan Province, Iran – Part 1: Annual energy estimation , 2014 .

[21]  Robert P. Broadwater,et al.  Current status and future advances for wind speed and power forecasting , 2014 .

[22]  Ali Mostafaeipour,et al.  An analysis of wind energy potential and economic evaluation in Zahedan, Iran , 2014 .

[23]  K. Gnana Sheela,et al.  Neural network based hybrid computing model for wind speed prediction , 2013, Neurocomputing.

[24]  Sungmoon Jung,et al.  Weighted error functions in artificial neural networks for improved wind energy potential estimation , 2013 .

[25]  Dong Jiang,et al.  Evaluating the spatio-temporal variation of China's offshore wind resources based on remotely sensed wind field data , 2013 .

[26]  Neven Duić,et al.  Estimating the spatial distribution of high altitude wind energy potential in Southeast Europe , 2013 .

[27]  Hui Liu,et al.  Forecasting models for wind speed using wavelet, wavelet packet, time series and Artificial Neural Networks , 2013 .

[28]  Sungmoon Jung,et al.  Wind energy potential assessment considering the uncertainties due to limited data , 2013 .

[29]  Pourya Alamdari,et al.  Aerodynamic design and economical evaluation of site specific small vertical axis wind turbines , 2013 .

[30]  Seref Sagiroglu,et al.  Data mining and wind power prediction: A literature review , 2012 .

[31]  Tomonobu Senjyu,et al.  A new strategy for predicting short-term wind speed using soft computing models , 2012 .

[32]  Sandrine Aubrun,et al.  Sand erosion technique applied to wind resource assessment , 2012 .

[33]  Antonio Vigueras-Rodríguez,et al.  Spectral Coherence Model for Power Fluctuations in a Wind Farm , 2012 .

[34]  K. Philippopoulos,et al.  Application of artificial neural networks for the spatial estimation of wind speed in a coastal region with complex topography , 2012 .

[35]  Jian-Da Wu,et al.  A forecasting system for car fuel consumption using a radial basis function neural network , 2012, Expert Syst. Appl..

[36]  Kamal Poddar,et al.  Prediction of wind properties in urban environments using artificial neural network , 2011, Theoretical and Applied Climatology.

[37]  Haiyan Lu,et al.  A case study on a hybrid wind speed forecasting method using BP neural network , 2011, Knowl. Based Syst..

[38]  Gholamhassan Najafi,et al.  LLK1694-wind energy resources and development in Iran , 2011 .

[39]  A. Gastli,et al.  Evaluation of NWP performance for wind energy resource assessment in Oman , 2011 .

[40]  Yongqian Liu,et al.  Interpolation of missing wind data based on ANFIS , 2011 .

[41]  Joao P. S. Catalao,et al.  A hybrid PSO–ANFIS approach for short-term wind power prediction in Portugal , 2011 .

[42]  D. Fadare The application of artificial neural networks to mapping of wind speed profile for energy application in Nigeria , 2010 .

[43]  Mohammad Monfared,et al.  A new strategy for wind speed forecasting using artificial intelligent methods , 2009 .

[44]  Jozef Zurada,et al.  An Adaptive Neuro-Fuzzy Inference System-Based Approach to Real Estate Property Assessment , 2008 .

[45]  R. Barthelmie,et al.  Inter‐annual variability of wind indices across Europe , 2006 .

[46]  S. Sumathi,et al.  Introduction to neural networks using MATLAB 6.0 , 2006 .

[47]  Amit Singhal,et al.  Computer Vision and Fuzzy-Neural Systems , 2004, J. Electronic Imaging.

[48]  Robert J. Schalkoff,et al.  Artificial neural networks , 1997 .

[49]  Martin T. Hagan,et al.  Neural network design , 1995 .

[50]  Jyh-Shing Roger Jang,et al.  ANFIS: adaptive-network-based fuzzy inference system , 1993, IEEE Trans. Syst. Man Cybern..

[51]  M. Sugeno,et al.  Structure identification of fuzzy model , 1988 .