Perturbation theory for fractional evolution equations in a Banach space

A strong inspiration for studying perturbation theory for fractional evolution equations comes from the fact that they have proven to be useful tools in modeling many physical processes. In this paper, we study fractional evolution equations of order α ∈ (1, 2] associated with the infinitesimal generator of an operator fractional cosine function generated by bounded time-dependent perturbations in a Banach space. We show that the abstract fractional Cauchy problem associated with the infinitesimal generator A of a strongly continuous fractional cosine function remains uniformly well-posed under bounded time-dependent perturbation of A. We also provide some necessary special cases.

[1]  S. Woinowsky-krieger,et al.  The effect of an axial force on the vibration of hinged bars , 1950 .

[2]  Emilia Bazhlekova,et al.  Fractional evolution equations in Banach spaces , 2001 .

[3]  Kexue Li Fractional order semilinear Volterra integrodifferential equations in Banach spaces , 2014, 1406.3995.

[4]  J. Voigt On the perturbation theory for strongly continuous semigroups , 1977 .

[5]  Tosio Kato Perturbation theory for linear operators , 1966 .

[6]  R. Nagel,et al.  One-parameter semigroups for linear evolution equations , 1999 .

[7]  K. Diethelm Mittag-Leffler Functions , 2010 .

[8]  E. Bazhlekova Perturbation properties for abstract evolution equations of fractional order , 1999 .

[9]  T. Kaczorek,et al.  Fractional Differential Equations , 2015 .

[10]  Miao Li,et al.  On fractional resolvent operator functions , 2010 .

[11]  Michiaki Watanabe A perturbation theory for abstract evolution equations of second order , 1982 .

[12]  Yuhua Lin Time-dependent perturbation theory for abstract evolution equations of second order , 1998 .

[13]  W. Fitzgibbon,et al.  Global Existence and Boundedness of Solutions to the Extensible Beam Equation , 1982 .

[14]  Jan Bochenek An abstract nonlinear second order differential equation , 1991 .

[15]  N. Mahmudov,et al.  Abstract Second-Order Damped McKean-Vlasov Stochastic Evolution Equations , 2006 .

[16]  H. Srivastava,et al.  Theory and Applications of Fractional Differential Equations , 2006 .

[17]  Hernán R. Henríquez,et al.  Existence of solutions of the abstract Cauchy problem of fractional order , 2021 .

[18]  Ismail T. Huseynov,et al.  On a study of Sobolev‐type fractional functional evolution equations , 2021, Mathematical Methods in the Applied Sciences.

[19]  D. Lutz On bounded time-dependent perturbations of operator cosine functions , 1981 .

[20]  심상천 퍼지 Compactness에 관한 고찰 , 1997 .

[21]  C. Travis,et al.  Perturbation of strongly continuous cosine family generators , 1981 .

[22]  R. Phillips,et al.  Perturbation theory for semi-groups of linear operators , 1953 .

[23]  C. Travis,et al.  Cosine families and abstract nonlinear second order differential equations , 1978 .