Dynamic Expression of DNA Complexation with Self-assembled Biomolecular Clusters.
暂无分享,去创建一个
Pascal Dumy | V. Gervais | S. Ulrich | P. Dumy | Yannick Bessin | Virginie Gervais | Eline Bartolami | Eline Bartolami | Yannick Bessin | Sébastien Ulrich
[1] M. Crisma,et al. Crystal Structure of a Synthetic Cyclodecapeptide for Template‐Assembled Synthetic Protein Design , 2001, Chembiochem : a European journal of chemical biology.
[2] Douglas Philp,et al. SELBSTORGANISATION IN NATURLICHEN UND IN NICHTNATURLICHEN SYSTEMEN , 1996 .
[3] Jean-Marie Lehn,et al. From supramolecular chemistry towards constitutional dynamic chemistry and adaptive chemistry. , 2007, Chemical Society reviews.
[4] S. Otto,et al. Localized template-driven functionalization of nanoparticles by dynamic combinatorial chemistry. , 2015, Angewandte Chemie.
[5] Yinghua Jin,et al. Recent advances in dynamic covalent chemistry. , 2013, Chemical Society reviews.
[6] M. Nothisen,et al. Gene delivery with polycationic fullerene hexakis-adducts. , 2011, Chemical communications.
[7] D. Reinhoudt,et al. Multivalency in supramolecular chemistry and nanofabrication. , 2004, Organic & biomolecular chemistry.
[8] D. Reinhoudt,et al. Supramolekulare Chemie in Wasser , 2007 .
[9] J. de Mendoza,et al. Dynamic multivalency for carbohydrate-protein recognition through dynamic combinatorial libraries based on Fe(II)-bipyridine complexes. , 2013, Chemistry.
[10] J. F. Stoddart,et al. Multivalency and cooperativity in supramolecular chemistry. , 2005, Accounts of chemical research.
[11] George M Whitesides,et al. Polyvalent Interactions in Biological Systems: Implications for Design and Use of Multivalent Ligands and Inhibitors. , 1998, Angewandte Chemie.
[12] J. Lehn. Perspektiven der Chemie – Aspekte adaptiver Chemie und adaptiver Materialien , 2015 .
[13] J. Lehn,et al. Multivalency by self-assembly: binding of concanavalin A to metallosupramolecular architectures decorated with multiple carbohydrate groups. , 2014, Chemistry.
[14] S. Ulrich,et al. Oxime ligation: a chemoselective click-type reaction for accessing multifunctional biomolecular constructs. , 2014, Chemistry.
[15] G. M. Whitesides,et al. Polyvalente Wechselwirkungen in biologischen Systemen: Auswirkungen auf das Design und die Verwendung multivalenter Liganden und Inhibitoren , 1998 .
[16] Mateo I. Sánchez,et al. Reversible supramolecular assembly at specific DNA sites: nickel-promoted bivalent DNA binding with designed peptide and bipyridyl-bis(benzamidine) components. , 2014, Angewandte Chemie.
[17] S. Stupp,et al. Dynamic display of bioactivity through host-guest chemistry. , 2013, Angewandte Chemie.
[18] Jennifer A. Prescher,et al. Finding the right (bioorthogonal) chemistry. , 2014, ACS chemical biology.
[19] Weian Zhao,et al. DNA‐Scaffolded Multivalent Ligands to Modulate Cell Function , 2014, Chembiochem : a European journal of chemical biology.
[20] O. Ikkala,et al. Optically triggered release of DNA from multivalent dendrons by degrading and charge-switching multivalency. , 2007, Angewandte Chemie.
[21] J. Hardy,et al. High-affinity multivalent DNA binding by using low-molecular-weight dendrons. , 2005, Angewandte Chemie.
[22] Graham R. L. Cousins,et al. Dynamische kovalente Chemie , 2002 .
[23] Anna Barnard,et al. Self-assembled multivalency: dynamic ligand arrays for high-affinity binding. , 2012, Angewandte Chemie.
[24] D. Rideout. Self-assembling cytotoxins. , 1986, Science.
[25] J. Rémy,et al. Polycationic pillar[5]arene derivatives: interaction with DNA and biological applications. , 2013, Chemistry.
[26] A. Rotaru,et al. Dynamic constitutional frameworks for DNA biomimetic recognition. , 2015, Chemical communications.
[27] Zhijun Zhang,et al. Bioinspired therapeutic dendrimers as efficient peptide drugs based on supramolecular interactions for tumor inhibition. , 2015, Angewandte Chemie.
[28] Daniel J. Welsh,et al. "On-off" multivalent recognition: degradable dendrons for temporary high-affinity DNA binding. , 2009, Angewandte Chemie.
[29] K. Rice,et al. A Potent New Class of Reductively Activated Peptide Gene Delivery Agents* , 2000, The Journal of Biological Chemistry.
[30] Maurizio Fermeglia,et al. Double-degradable responsive self-assembled multivalent arrays--temporary nanoscale recognition between dendrons and DNA. , 2014, Organic & biomolecular chemistry.
[31] Rong Ni,et al. Structural mimics of viruses through peptide/DNA co-assembly. , 2014, Journal of the American Chemical Society.
[32] Laura L. Kiessling,et al. Synthetische multivalente Liganden als Sonden fÜr die Signaltransduktion , 2006 .
[33] S. Stupp,et al. Precision templating with DNA of a virus-like particle with peptide nanostructures. , 2013, Journal of the American Chemical Society.
[34] P. Labbé,et al. RAFT Nano‐constructs: surfing to biological applications , 2008, Journal of peptide science : an official publication of the European Peptide Society.
[35] L. Brunsveld,et al. Supramolecular chemical biology; bioactive synthetic self-assemblies. , 2013, Organic & biomolecular chemistry.
[36] D. Reinhoudt,et al. Supramolecular chemistry in water. , 2007, Angewandte Chemie.
[37] M. Mutter,et al. Solution structure of regioselectively addressable functionalized templates: an NMR and restrained molecular dynamics investigation. , 1998, Biopolymers.
[38] S. Ulrich,et al. Probing secondary interactions in biomolecular recognition by dynamic combinatorial chemistry. , 2014, Chemical communications.
[39] R. Nolte,et al. Self-assembly and optically triggered disassembly of hierarchical dendron-virus complexes. , 2010, Nature chemistry.
[40] Christina Graf,et al. Multivalency as a chemical organization and action principle. , 2012, Angewandte Chemie.
[41] N. Winssinger,et al. DNA as a Platform to Program Assemblies with Emerging Functions in Chemical Biology , 2013 .
[42] M. Finn,et al. Click chemistry in complex mixtures: bioorthogonal bioconjugation. , 2014, Chemistry & biology.
[43] Jason E Gestwicki,et al. Synthetic multivalent ligands as probes of signal transduction. , 2006, Angewandte Chemie.
[44] E. Smiley,et al. Low molecular weight disulfide cross-linking peptides as nonviral gene delivery carriers. , 2000, Bioconjugate chemistry.
[45] C. Graf,et al. Multivalenz als chemisches Organisations‐ und Wirkprinzip , 2012 .
[46] O. Melnyk,et al. α-Oxo aldehyde or glyoxylyl group chemistry in peptide bioconjugation. , 2013, Bioconjugate chemistry.
[47] Wei Zhao,et al. Cationic vesicles based on amphiphilic pillar[5]arene capped with ferrocenium: a redox-responsive system for drug/siRNA co-delivery. , 2014, Angewandte Chemie.
[48] Alain Wagner,et al. Developments in the field of bioorthogonal bond forming reactions-past and present trends. , 2014, Bioconjugate chemistry.
[49] P. Dumy,et al. Synthetic Peptide Templates for Molecular Recognition: Recent Advances and Applications , 2006, Chembiochem : a European journal of chemical biology.
[50] M. Merkx,et al. Supramolecular control of enzyme activity through cucurbit[8]uril-mediated dimerization. , 2013, Angewandte Chemie.
[51] Luc Brunsveld,et al. Combining supramolecular chemistry with biology. , 2010, Chemical Society reviews.
[52] Jean-Marie Lehn,et al. Perspectives in chemistry--aspects of adaptive chemistry and materials. , 2015, Angewandte Chemie.
[53] Douglas Philp,et al. Self‐Assembly in Natural and Unnatural Systems , 1996 .
[54] Alejandro Díaz-Moscoso,et al. Rational design of cationic cyclooligosaccharides as efficient gene delivery systems. , 2008, Chemical communications.
[55] S. Durell,et al. Programmable Multivalent Display of Receptor Ligands using Peptide Nucleic Acid Nanoscaffolds , 2012, Nature Communications.
[56] J. Behr,et al. Monomolecular collapse of plasmid DNA into stable virus-like particles. , 1998, Proceedings of the National Academy of Sciences of the United States of America.
[57] S. Barluenga,et al. PNA as a Biosupramolecular Tag for Programmable Assemblies and Reactions. , 2015, Accounts of chemical research.
[58] E. W. Meijer,et al. Spatiotemporal control and superselectivity in supramolecular polymers using multivalency , 2013, Proceedings of the National Academy of Sciences.
[59] D. Philp,et al. Applying biological principles to the assembly and selection of synthetic superstructures , 2010 .
[60] David K. Smith,et al. Selbstorganisierte Multivalenz: dynamische Ligandenanordnungen für hochaffine Bindungen , 2012 .
[61] Rui Liu,et al. Generating DNA Synbodies from Previously Discovered Peptides , 2011, Chembiochem : a European journal of chemical biology.
[62] V. Franceschi,et al. Arginine clustering on calix[4]arene macrocycles for improved cell penetration and DNA delivery , 2013, Nature Communications.
[63] Light-triggered capture and release of DNA and proteins by host-guest binding and electrostatic interaction. , 2015, Chemistry.
[64] V. Villari,et al. Nanostructures of cationic amphiphilic cyclodextrin complexes with DNA. , 2013, Biomacromolecules.
[65] Stuart J Rowan,et al. Dynamic covalent chemistry. , 2002, Angewandte Chemie.
[66] M. Vázquez,et al. DNA Recognition by Synthetic Constructs , 2011, Chembiochem : a European journal of chemical biology.