Dynamic Expression of DNA Complexation with Self-assembled Biomolecular Clusters.

We report herein the implementation of a dynamic covalent chemistry approach to the generation of multivalent clusters for DNA recognition. We show that biomolecular clusters can be expressed in situ by a programmed self-assembly process using chemoselective ligations. The cationic clusters are shown, by fluorescence displacement assay, gel electrophoresis and isothermal titration calorimetry, to effectively complex DNA through multivalent interactions. The reversibility of the ligation was exploited to demonstrate that template effects occur, whereby DNA imposes component selection in order to favor the most active DNA-binding clusters. Furthermore, we show that a chemical effector can be used to trigger DNA release through component exchange reactions.

[1]  M. Crisma,et al.  Crystal Structure of a Synthetic Cyclodecapeptide for Template‐Assembled Synthetic Protein Design , 2001, Chembiochem : a European journal of chemical biology.

[2]  Douglas Philp,et al.  SELBSTORGANISATION IN NATURLICHEN UND IN NICHTNATURLICHEN SYSTEMEN , 1996 .

[3]  Jean-Marie Lehn,et al.  From supramolecular chemistry towards constitutional dynamic chemistry and adaptive chemistry. , 2007, Chemical Society reviews.

[4]  S. Otto,et al.  Localized template-driven functionalization of nanoparticles by dynamic combinatorial chemistry. , 2015, Angewandte Chemie.

[5]  Yinghua Jin,et al.  Recent advances in dynamic covalent chemistry. , 2013, Chemical Society reviews.

[6]  M. Nothisen,et al.  Gene delivery with polycationic fullerene hexakis-adducts. , 2011, Chemical communications.

[7]  D. Reinhoudt,et al.  Multivalency in supramolecular chemistry and nanofabrication. , 2004, Organic & biomolecular chemistry.

[8]  D. Reinhoudt,et al.  Supramolekulare Chemie in Wasser , 2007 .

[9]  J. de Mendoza,et al.  Dynamic multivalency for carbohydrate-protein recognition through dynamic combinatorial libraries based on Fe(II)-bipyridine complexes. , 2013, Chemistry.

[10]  J. F. Stoddart,et al.  Multivalency and cooperativity in supramolecular chemistry. , 2005, Accounts of chemical research.

[11]  George M Whitesides,et al.  Polyvalent Interactions in Biological Systems: Implications for Design and Use of Multivalent Ligands and Inhibitors. , 1998, Angewandte Chemie.

[12]  J. Lehn Perspektiven der Chemie – Aspekte adaptiver Chemie und adaptiver Materialien , 2015 .

[13]  J. Lehn,et al.  Multivalency by self-assembly: binding of concanavalin A to metallosupramolecular architectures decorated with multiple carbohydrate groups. , 2014, Chemistry.

[14]  S. Ulrich,et al.  Oxime ligation: a chemoselective click-type reaction for accessing multifunctional biomolecular constructs. , 2014, Chemistry.

[15]  G. M. Whitesides,et al.  Polyvalente Wechselwirkungen in biologischen Systemen: Auswirkungen auf das Design und die Verwendung multivalenter Liganden und Inhibitoren , 1998 .

[16]  Mateo I. Sánchez,et al.  Reversible supramolecular assembly at specific DNA sites: nickel-promoted bivalent DNA binding with designed peptide and bipyridyl-bis(benzamidine) components. , 2014, Angewandte Chemie.

[17]  S. Stupp,et al.  Dynamic display of bioactivity through host-guest chemistry. , 2013, Angewandte Chemie.

[18]  Jennifer A. Prescher,et al.  Finding the right (bioorthogonal) chemistry. , 2014, ACS chemical biology.

[19]  Weian Zhao,et al.  DNA‐Scaffolded Multivalent Ligands to Modulate Cell Function , 2014, Chembiochem : a European journal of chemical biology.

[20]  O. Ikkala,et al.  Optically triggered release of DNA from multivalent dendrons by degrading and charge-switching multivalency. , 2007, Angewandte Chemie.

[21]  J. Hardy,et al.  High-affinity multivalent DNA binding by using low-molecular-weight dendrons. , 2005, Angewandte Chemie.

[22]  Graham R. L. Cousins,et al.  Dynamische kovalente Chemie , 2002 .

[23]  Anna Barnard,et al.  Self-assembled multivalency: dynamic ligand arrays for high-affinity binding. , 2012, Angewandte Chemie.

[24]  D. Rideout Self-assembling cytotoxins. , 1986, Science.

[25]  J. Rémy,et al.  Polycationic pillar[5]arene derivatives: interaction with DNA and biological applications. , 2013, Chemistry.

[26]  A. Rotaru,et al.  Dynamic constitutional frameworks for DNA biomimetic recognition. , 2015, Chemical communications.

[27]  Zhijun Zhang,et al.  Bioinspired therapeutic dendrimers as efficient peptide drugs based on supramolecular interactions for tumor inhibition. , 2015, Angewandte Chemie.

[28]  Daniel J. Welsh,et al.  "On-off" multivalent recognition: degradable dendrons for temporary high-affinity DNA binding. , 2009, Angewandte Chemie.

[29]  K. Rice,et al.  A Potent New Class of Reductively Activated Peptide Gene Delivery Agents* , 2000, The Journal of Biological Chemistry.

[30]  Maurizio Fermeglia,et al.  Double-degradable responsive self-assembled multivalent arrays--temporary nanoscale recognition between dendrons and DNA. , 2014, Organic & biomolecular chemistry.

[31]  Rong Ni,et al.  Structural mimics of viruses through peptide/DNA co-assembly. , 2014, Journal of the American Chemical Society.

[32]  Laura L. Kiessling,et al.  Synthetische multivalente Liganden als Sonden fÜr die Signaltransduktion , 2006 .

[33]  S. Stupp,et al.  Precision templating with DNA of a virus-like particle with peptide nanostructures. , 2013, Journal of the American Chemical Society.

[34]  P. Labbé,et al.  RAFT Nano‐constructs: surfing to biological applications , 2008, Journal of peptide science : an official publication of the European Peptide Society.

[35]  L. Brunsveld,et al.  Supramolecular chemical biology; bioactive synthetic self-assemblies. , 2013, Organic & biomolecular chemistry.

[36]  D. Reinhoudt,et al.  Supramolecular chemistry in water. , 2007, Angewandte Chemie.

[37]  M. Mutter,et al.  Solution structure of regioselectively addressable functionalized templates: an NMR and restrained molecular dynamics investigation. , 1998, Biopolymers.

[38]  S. Ulrich,et al.  Probing secondary interactions in biomolecular recognition by dynamic combinatorial chemistry. , 2014, Chemical communications.

[39]  R. Nolte,et al.  Self-assembly and optically triggered disassembly of hierarchical dendron-virus complexes. , 2010, Nature chemistry.

[40]  Christina Graf,et al.  Multivalency as a chemical organization and action principle. , 2012, Angewandte Chemie.

[41]  N. Winssinger,et al.  DNA as a Platform to Program Assemblies with Emerging Functions in Chemical Biology , 2013 .

[42]  M. Finn,et al.  Click chemistry in complex mixtures: bioorthogonal bioconjugation. , 2014, Chemistry & biology.

[43]  Jason E Gestwicki,et al.  Synthetic multivalent ligands as probes of signal transduction. , 2006, Angewandte Chemie.

[44]  E. Smiley,et al.  Low molecular weight disulfide cross-linking peptides as nonviral gene delivery carriers. , 2000, Bioconjugate chemistry.

[45]  C. Graf,et al.  Multivalenz als chemisches Organisations‐ und Wirkprinzip , 2012 .

[46]  O. Melnyk,et al.  α-Oxo aldehyde or glyoxylyl group chemistry in peptide bioconjugation. , 2013, Bioconjugate chemistry.

[47]  Wei Zhao,et al.  Cationic vesicles based on amphiphilic pillar[5]arene capped with ferrocenium: a redox-responsive system for drug/siRNA co-delivery. , 2014, Angewandte Chemie.

[48]  Alain Wagner,et al.  Developments in the field of bioorthogonal bond forming reactions-past and present trends. , 2014, Bioconjugate chemistry.

[49]  P. Dumy,et al.  Synthetic Peptide Templates for Molecular Recognition: Recent Advances and Applications , 2006, Chembiochem : a European journal of chemical biology.

[50]  M. Merkx,et al.  Supramolecular control of enzyme activity through cucurbit[8]uril-mediated dimerization. , 2013, Angewandte Chemie.

[51]  Luc Brunsveld,et al.  Combining supramolecular chemistry with biology. , 2010, Chemical Society reviews.

[52]  Jean-Marie Lehn,et al.  Perspectives in chemistry--aspects of adaptive chemistry and materials. , 2015, Angewandte Chemie.

[53]  Douglas Philp,et al.  Self‐Assembly in Natural and Unnatural Systems , 1996 .

[54]  Alejandro Díaz-Moscoso,et al.  Rational design of cationic cyclooligosaccharides as efficient gene delivery systems. , 2008, Chemical communications.

[55]  S. Durell,et al.  Programmable Multivalent Display of Receptor Ligands using Peptide Nucleic Acid Nanoscaffolds , 2012, Nature Communications.

[56]  J. Behr,et al.  Monomolecular collapse of plasmid DNA into stable virus-like particles. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[57]  S. Barluenga,et al.  PNA as a Biosupramolecular Tag for Programmable Assemblies and Reactions. , 2015, Accounts of chemical research.

[58]  E. W. Meijer,et al.  Spatiotemporal control and superselectivity in supramolecular polymers using multivalency , 2013, Proceedings of the National Academy of Sciences.

[59]  D. Philp,et al.  Applying biological principles to the assembly and selection of synthetic superstructures , 2010 .

[60]  David K. Smith,et al.  Selbstorganisierte Multivalenz: dynamische Ligandenanordnungen für hochaffine Bindungen , 2012 .

[61]  Rui Liu,et al.  Generating DNA Synbodies from Previously Discovered Peptides , 2011, Chembiochem : a European journal of chemical biology.

[62]  V. Franceschi,et al.  Arginine clustering on calix[4]arene macrocycles for improved cell penetration and DNA delivery , 2013, Nature Communications.

[63]  Light-triggered capture and release of DNA and proteins by host-guest binding and electrostatic interaction. , 2015, Chemistry.

[64]  V. Villari,et al.  Nanostructures of cationic amphiphilic cyclodextrin complexes with DNA. , 2013, Biomacromolecules.

[65]  Stuart J Rowan,et al.  Dynamic covalent chemistry. , 2002, Angewandte Chemie.

[66]  M. Vázquez,et al.  DNA Recognition by Synthetic Constructs , 2011, Chembiochem : a European journal of chemical biology.