A long-range fronto-parietal 5- to 10-Hz network predicts "top-down" controlled guidance in a task-switch paradigm.

The capacity to rapidly adjust behavioral strategies according to changing task demands is closely associated with coordinated activity in lateral and medial prefrontal cortices. Subdivisions within prefrontal cortex are implicated to encode attentional task sets and to update changing task rules, particularly when changing task demands require top-down control. Here, we tested whether these top-down processes precede stimulus processing and constitute a preparatory attentional state that functionally couples with parietal cortex. We examined this functional coupling by recording from intracranial EEG electrodes in macaques during performance of a task-switching paradigm that separates task performance that is based on controlled top-down guidance from automatic, stimulus-triggered processing modes. We identify a prefrontal-parietal network that phase synchronizes at 5-10 Hz, particularly during preparatory states that indicate top-down controlled task-processing modes. Phase relations in the network suggest that medial and lateral prefrontal cortices synchronize bidirectionally, with medial prefrontal cortex showing a phase-lead relative to left parietal recorded 5- to 10-Hz preparatory signals. These findings reveal a 5- to 10-Hz coordinated, long-range fronto-parietal network prior to actual task-relevant stimulus processing, particularly when subjects engage in controlled task processing modes.

[1]  Stefan Everling,et al.  Specific Contributions of Ventromedial, Anterior Cingulate, and Lateral Prefrontal Cortex for Attentional Selection and Stimulus Valuation , 2011, PLoS biology.

[2]  M. Hallett,et al.  Identifying true brain interaction from EEG data using the imaginary part of coherency , 2004, Clinical Neurophysiology.

[3]  O. Hikosaka,et al.  Perceptual Learning, Motor Learning and Automaticity Switching from Automatic to Controlled Behavior: Cortico-basal Ganglia Mechanisms , 2022 .

[4]  R. Tibshirani,et al.  An Introduction to the Bootstrap , 1995 .

[5]  W. Klimesch,et al.  The Electrophysiological Dynamics of Interference during the Stroop Task , 2008, Journal of Cognitive Neuroscience.

[6]  R. Simon,et al.  Controlling the number of false discoveries: application to high-dimensional genomic data , 2004 .

[7]  M. Posner,et al.  The attention system of the human brain: 20 years after. , 2012, Annual review of neuroscience.

[8]  O. Hikosaka,et al.  Role for Subthalamic Nucleus Neurons in Switching from Automatic to Controlled Eye Movement , 2008, The Journal of Neuroscience.

[9]  O. Jensen,et al.  Frontal theta activity in humans increases with memory load in a working memory task , 2002, The European journal of neuroscience.

[10]  E. Koechlin,et al.  Anterior Prefrontal Function and the Limits of Human Decision-Making , 2007, Science.

[11]  D. R. Euston,et al.  The Role of Medial Prefrontal Cortex in Memory and Decision Making , 2012, Neuron.

[12]  M. Roesch,et al.  Neuronal activity in macaque SEF and ACC during performance of tasks involving conflict. , 2005, Journal of neurophysiology.

[13]  Jessica A. Cardin,et al.  Driving fast-spiking cells induces gamma rhythm and controls sensory responses , 2009, Nature.

[14]  Jeffrey D Schall,et al.  Nonhuman primate event-related potentials indexing covert shifts of attention , 2007, Proceedings of the National Academy of Sciences.

[15]  O. Hikosaka,et al.  Switching from automatic to controlled action by monkey medial frontal cortex , 2007, Nature Neuroscience.

[16]  Karl J. Friston,et al.  Canonical Microcircuits for Predictive Coding , 2012, Neuron.

[17]  M. Corbetta,et al.  Large-scale cortical correlation structure of spontaneous oscillatory activity , 2012, Nature Neuroscience.

[18]  György Buzsáki,et al.  Neural Syntax: Cell Assemblies, Synapsembles, and Readers , 2010, Neuron.

[19]  Y. Isomura,et al.  Theta oscillations in primate prefrontal and anterior cingulate cortices in forewarned reaction time tasks. , 2010, Journal of neurophysiology.

[20]  Adam Gazzaley,et al.  Expectation-Driven Changes in Cortical Functional Connectivity Influence Working Memory and Long-Term Memory Performance , 2010, The Journal of Neuroscience.

[21]  Robert Oostenveld,et al.  An improved index of phase-synchronization for electrophysiological data in the presence of volume-conduction, noise and sample-size bias , 2011, NeuroImage.

[22]  R. Deichmann,et al.  Distinct causal influences of parietal versus frontal areas on human visual cortex: evidence from concurrent TMS-fMRI. , 2008, Cerebral cortex.

[23]  J. Matias Palva,et al.  Graph properties of synchronized cortical networks during visual working memory maintenance , 2010, NeuroImage.

[24]  Gerhard Brewka,et al.  Dynamic Interactions between Goals and Beliefs , 2007, IJCAI.

[25]  T. Womelsdorf,et al.  Human Neuroscience , 2022 .

[26]  R. Desimone,et al.  High-Frequency, Long-Range Coupling Between Prefrontal and Visual Cortex During Attention , 2009, Science.

[27]  Mingzhou Ding,et al.  Analyzing information flow in brain networks with nonparametric Granger causality , 2008, NeuroImage.

[28]  M. Brass,et al.  Decomposing Components of Task Preparation with Functional Magnetic Resonance Imaging , 2004, Journal of Cognitive Neuroscience.

[29]  C. Summerfield,et al.  Expectation (and attention) in visual cognition , 2009, Trends in Cognitive Sciences.

[30]  Siegel Markus,et al.  Oscillatory synchronization in large-scale cortical networks predicts perception , 2011 .

[31]  Manuel Schabus,et al.  Fronto-parietal EEG coherence in theta and upper alpha reflect central executive functions of working memory. , 2005, International journal of psychophysiology : official journal of the International Organization of Psychophysiology.

[32]  J. Fell,et al.  The role of phase synchronization in memory processes , 2011, Nature Reviews Neuroscience.

[33]  A. Engel,et al.  Trial-by-Trial Coupling of Concurrent Electroencephalogram and Functional Magnetic Resonance Imaging Identifies the Dynamics of Performance Monitoring , 2005, The Journal of Neuroscience.

[34]  David M. Groppe,et al.  Mass univariate analysis of event-related brain potentials/fields I: a critical tutorial review. , 2011, Psychophysiology.

[35]  C. Stam,et al.  Phase lag index: Assessment of functional connectivity from multi channel EEG and MEG with diminished bias from common sources , 2007, Human brain mapping.

[36]  Stefan Everling,et al.  Nonhuman primate event-related potentials associated with pro- and anti-saccades , 2010, NeuroImage.

[37]  P. Mitra,et al.  Learning-related coordination of striatal and hippocampal theta rhythms during acquisition of a procedural maze task , 2007, Proceedings of the National Academy of Sciences.

[38]  Luc H. Arnal,et al.  Cortical oscillations and sensory predictions , 2012, Trends in Cognitive Sciences.

[39]  Kristina M. Visscher,et al.  A Core System for the Implementation of Task Sets , 2006, Neuron.

[40]  Justin L. Vincent,et al.  Distinct brain networks for adaptive and stable task control in humans , 2007, Proceedings of the National Academy of Sciences.

[41]  W. Singer,et al.  Orientation selectivity and noise correlation in awake monkey area V1 are modulated by the gamma cycle , 2012, Proceedings of the National Academy of Sciences.

[42]  X. Leinekugel,et al.  Neural circuits underlying the generation of theta oscillations , 2012, Journal of Physiology-Paris.

[43]  S. Bressler,et al.  Large-scale brain networks in cognition: emerging methods and principles , 2010, Trends in Cognitive Sciences.

[44]  J. Palva,et al.  Neuronal synchrony reveals working memory networks and predicts individual memory capacity , 2010, Proceedings of the National Academy of Sciences.

[45]  Carmena Jose,et al.  Oscillatory phase coupling coordinates anatomically-dispersed functional cell assemblies , 2011 .

[46]  Theodore P. Zanto,et al.  Causal role of the prefrontal cortex in top-down modulation of visual processing and working memory , 2011, Nature Neuroscience.

[47]  Rodrigo F. Salazar,et al.  Content-Specific Fronto-Parietal Synchronization During Visual Working Memory , 2012, Science.

[48]  John J. B. Allen,et al.  Prelude to and Resolution of an Error: EEG Phase Synchrony Reveals Cognitive Control Dynamics during Action Monitoring , 2009, The Journal of Neuroscience.

[49]  H. Petsche,et al.  Synchronization between prefrontal and posterior association cortex during human working memory. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[50]  U. Rutishauser,et al.  Human memory strength is predicted by theta-frequency phase-locking of single neurons , 2010, Nature.

[51]  Mehdi Khamassi,et al.  Coherent Theta Oscillations and Reorganization of Spike Timing in the Hippocampal- Prefrontal Network upon Learning , 2010, Neuron.

[52]  T. Womelsdorf,et al.  Attentional Stimulus Selection through Selective Synchronization between Monkey Visual Areas , 2012, Neuron.

[53]  Michael X. Cohen,et al.  Dynamic Interactions between Large-Scale Brain Networks Predict Behavioral Adaptation after Perceptual Errors , 2012, Cerebral cortex.

[54]  John J. B. Allen,et al.  Theta lingua franca: a common mid-frontal substrate for action monitoring processes. , 2012, Psychophysiology.

[55]  Annette Witt,et al.  Dynamic Effective Connectivity of Inter-Areal Brain Circuits , 2011, PLoS Comput. Biol..

[56]  Stefan Haufe,et al.  A critical assessment of connectivity measures for EEG data: A simulation study , 2013, NeuroImage.

[57]  T. Braver The variable nature of cognitive control: a dual mechanisms framework , 2012, Trends in Cognitive Sciences.

[58]  Nick F. Ramsey,et al.  Human Motor Cortical Activity Is Selectively Phase-Entrained on Underlying Rhythms , 2012, PLoS Comput. Biol..

[59]  G. Buzsáki,et al.  A 4 Hz Oscillation Adaptively Synchronizes Prefrontal, VTA, and Hippocampal Activities , 2011, Neuron.

[60]  Ravi S. Menon,et al.  Resting-state connectivity identifies distinct functional networks in macaque cingulate cortex. , 2012, Cerebral cortex.

[61]  R. Passingham,et al.  Reading Hidden Intentions in the Human Brain , 2007, Current Biology.

[62]  Xiao-Jing Wang Decision Making in Recurrent Neuronal Circuits , 2008, Neuron.

[63]  M. Wilson,et al.  Theta Rhythms Coordinate Hippocampal–Prefrontal Interactions in a Spatial Memory Task , 2005, PLoS biology.

[64]  J. Schoffelen,et al.  Neuronal Coherence as a Mechanism of Effective Corticospinal Interaction , 2005, Science.

[65]  Y. Isomura,et al.  Direct recording of theta oscillations in primate prefrontal and anterior cingulate cortices. , 2006, Journal of neurophysiology.

[66]  R. Passingham,et al.  Medial frontal cortex: from self-generated action to reflection on one's own performance , 2010, Trends in Cognitive Sciences.

[67]  M. Corbetta,et al.  Spatial neglect and attention networks. , 2011, Annual review of neuroscience.

[68]  Anna C Nobre,et al.  FEF TMS affects visual cortical activity. , 2006, Cerebral cortex.

[69]  M. Brass,et al.  The role of the frontal cortex in task preparation. , 2002, Cerebral cortex.

[70]  Sean M Montgomery,et al.  Entrainment of Neocortical Neurons and Gamma Oscillations by the Hippocampal Theta Rhythm , 2008, Neuron.

[71]  M. Kenward,et al.  An Introduction to the Bootstrap , 2007 .

[72]  W. Singer,et al.  Modulation of Neuronal Interactions Through Neuronal Synchronization , 2007, Science.

[73]  A. Engel,et al.  Spectral fingerprints of large-scale neuronal interactions , 2012, Nature Reviews Neuroscience.

[74]  Guido Nolte,et al.  Brain Oscillations and Functional Connectivity during Overt Language Production , 2012, Front. Psychology.

[75]  Eric A. Zilli,et al.  Medial prefrontal cortex cells show dynamic modulation with the hippocampal theta rhythm dependent on behavior , 2005, Hippocampus.

[76]  Stefan Everling,et al.  Theta-activity in anterior cingulate cortex predicts task rules and their adjustments following errors , 2010, Proceedings of the National Academy of Sciences.

[77]  A. Toga,et al.  The Rhesus Monkey Brain in Stereotaxic Coordinates , 1999 .

[78]  P. Fries A mechanism for cognitive dynamics: neuronal communication through neuronal coherence , 2005, Trends in Cognitive Sciences.

[79]  Katsuyuki Sakai,et al.  Task-specific signal transmission from prefrontal cortex in visual selective attention , 2009, Nature Neuroscience.

[80]  M. Nitsche,et al.  The Importance of Timing in Segregated Theta Phase-Coupling for Cognitive Performance , 2012, Current Biology.

[81]  P. Glimcher,et al.  The Neurobiology of Decision: Consensus and Controversy , 2009, Neuron.

[82]  Ulf Knoblich,et al.  What do We Gain from Gamma? Local Dynamic Gain Modulation Drives Enhanced Efficacy and Efficiency of Signal Transmission , 2010, Front. Hum. Neurosci..

[83]  R. VanRullen,et al.  An oscillatory mechanism for prioritizing salient unattended stimuli , 2012, Trends in Cognitive Sciences.

[84]  Y. Benjamini,et al.  THE CONTROL OF THE FALSE DISCOVERY RATE IN MULTIPLE TESTING UNDER DEPENDENCY , 2001 .

[85]  S. Petersen,et al.  A dual-networks architecture of top-down control , 2008, Trends in Cognitive Sciences.

[86]  Thomas E. Nichols,et al.  Thresholding of Statistical Maps in Functional Neuroimaging Using the False Discovery Rate , 2002, NeuroImage.

[87]  Gregor M. Hörzer,et al.  Theta coupling between V4 and prefrontal cortex predicts visual short-term memory performance , 2012, Nature Neuroscience.

[88]  G. Buzsáki,et al.  Theta Oscillations Provide Temporal Windows for Local Circuit Computation in the Entorhinal-Hippocampal Loop , 2009, Neuron.

[89]  Timothy E. J. Behrens,et al.  Optimal decision making and the anterior cingulate cortex , 2006, Nature Neuroscience.

[90]  K. Johnston,et al.  Top-Down Control-Signal Dynamics in Anterior Cingulate and Prefrontal Cortex Neurons following Task Switching , 2007, Neuron.

[91]  Michael X. Cohen,et al.  Single-Trial Regression Elucidates the Role of Prefrontal Theta Oscillations in Response Conflict , 2011, Front. Psychology.

[92]  K. Koepsell,et al.  Oscillatory phase coupling coordinates anatomically dispersed functional cell assemblies , 2010, Proceedings of the National Academy of Sciences.

[93]  Matthijs Vink,et al.  Top–down‐directed synchrony from medial frontal cortex to nucleus accumbens during reward anticipation , 2012, Human brain mapping.

[94]  Stefan Everling,et al.  Frontoparietal activation with preparation for antisaccades. , 2007, Journal of neurophysiology.