Rhythm and Randomness in Human Contact

There is substantial interest in the effect of human mobility patterns on opportunistic communications. Inspired by recent work revisiting some of the early evidence for a L´evy flight foraging strategy in animals, we analyse datasets on human contact from real world traces. By analysing the distribution of inter-contact times on different time scales and using different graphical forms, we find not only the highly skewed distributions of waiting times highlighted in previous studies but also clear circadian rhythm. The relative visibility of these two components depends strongly on which graphical form is adopted and the range of time scales. We use a simple model to reconstruct the observed behaviour and discuss the implications of this for forwarding efficiency.

[1]  Pan Hui,et al.  BUBBLE Rap: Social-Based Forwarding in Delay-Tolerant Networks , 2008, IEEE Transactions on Mobile Computing.

[2]  Christophe Diot,et al.  Experiences from measuring human mobility using Bluetooth inquiring devices , 2007, MobiEval '07.

[3]  Jean-Yves Le Boudec,et al.  Power Law and Exponential Decay of Intercontact Times between Mobile Devices , 2007, IEEE Transactions on Mobile Computing.

[4]  Pan Hui,et al.  Impact of Human Mobility on the Design of Opportunistic Forwarding Algorithms , 2006, Proceedings IEEE INFOCOM 2006. 25TH IEEE International Conference on Computer Communications.

[5]  Injong Rhee,et al.  SLAW: A New Mobility Model for Human Walks , 2009, IEEE INFOCOM 2009.

[6]  Injong Rhee,et al.  On the levy-walk nature of human mobility , 2011, TNET.

[7]  Marco Conti,et al.  The sociable traveller: human travelling patterns in social-based mobility , 2009, MobiWAC '09.

[8]  David R. Anderson,et al.  Understanding information criteria for selection among capture-recapture or ring recovery models , 1999 .

[9]  Holger Kenn,et al.  Exploring Social Context with the Wireless Rope , 2006, OTM Workshops.

[10]  Rosario N. Mantegna,et al.  Book Review: An Introduction to Econophysics, Correlations, and Complexity in Finance, N. Rosario, H. Mantegna, and H. E. Stanley, Cambridge University Press, Cambridge, 2000. , 2000 .

[11]  S. Chong,et al.  SLAW : A Mobility Model for Human Walks , 2009 .

[12]  H. Stanley,et al.  Optimizing the success of random searches , 1999, Nature.

[13]  Injong Rhee,et al.  Human Mobility Patterns and Their Impact on Delay Tolerant Networks , 2007, HotNets.

[14]  Tristan Henderson,et al.  The changing usage of a mature campus-wide wireless network , 2008, Comput. Networks.

[15]  P. A. Prince,et al.  Lévy flight search patterns of wandering albatrosses , 1996, Nature.

[16]  A M Reynolds,et al.  The Lévy flight paradigm: random search patterns and mechanisms. , 2009, Ecology.

[17]  A. M. Edwards,et al.  Revisiting Lévy flight search patterns of wandering albatrosses, bumblebees and deer , 2007, Nature.

[18]  Adilson E. Motter,et al.  A Poissonian explanation for heavy tails in e-mail communication , 2008, Proceedings of the National Academy of Sciences.

[19]  J. Kleinberg Computing: the wireless epidemic. , 2007, Nature.

[20]  A. M. Edwards,et al.  Using likelihood to test for Lévy flight search patterns and for general power-law distributions in nature. , 2008, The Journal of animal ecology.

[21]  Jörg Baschnagel,et al.  Stochastic Processes: From Physics to Finance , 2000 .

[22]  Albert-László Barabási,et al.  Understanding individual human mobility patterns , 2008, Nature.

[23]  B. Enquist,et al.  On estimating the exponent of power-law frequency distributions. , 2008, Ecology.

[24]  Mark E. J. Newman,et al.  Power-Law Distributions in Empirical Data , 2007, SIAM Rev..

[25]  Alex Pentland,et al.  Reality mining: sensing complex social systems , 2006, Personal and Ubiquitous Computing.

[26]  Pan Hui,et al.  Impact of human mobility on the performance of opportunistic forwarding algorithms , 2006, INFOCOM 2006.

[27]  E. LESTER SMITH,et al.  AND OTHERS , 2005 .