Nonlinear convergence preserves information

Neural circuits are structured in layers of converging and diverging nonlinear neurons with selectivities and preferences. These components have the potential to hamper an efficient encoding of the circuit inputs. Past computational studies have optimized the nonlinearities of single neurons, or the weights matrices of networks, to maximize encoded information yet none have grappled with simultaneously optimizing circuit structure and neuron response functions for efficient coding. Rather than an explicit optimization of that kind, our approach is to compare circuit configurations with different combinations of these suboptimal components to discover how the interactions of these components affect the efficient coding of the neural circuit. We construct computational model circuits with different configurations and we compute and compare their response entropies. We find that the circuit configuration with divergence, convergence, and nonlinear subunits preserves the most information despite the compressive loss induced by both the convergence and the nonlinearities individually. These results show that the combination of selective nonlinearities and a compressive architecture - both elements that induce lossy compression - can promote efficient coding in tandem.

[1]  Michael J. Berry,et al.  Redundancy in the Population Code of the Retina , 2005, Neuron.

[2]  Michael J. Berry,et al.  Synergy, Redundancy, and Independence in Population Codes , 2003, The Journal of Neuroscience.

[3]  James J. DiCarlo,et al.  How Does the Brain Solve Visual Object Recognition? , 2012, Neuron.

[4]  H. Barlow Summation and inhibition in the frog's retina , 1953, The Journal of physiology.

[5]  M. Meister,et al.  Decorrelation and efficient coding by retinal ganglion cells , 2012, Nature Neuroscience.

[6]  P Sterling,et al.  The ON-alpha ganglion cell of the cat retina and its presynaptic cell types , 1988, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[7]  J. Sanes,et al.  The types of retinal ganglion cells: current status and implications for neuronal classification. , 2015, Annual review of neuroscience.

[8]  Thomas M. Cover,et al.  Elements of Information Theory , 2005 .

[9]  F. Attneave Some informational aspects of visual perception. , 1954, Psychological review.

[10]  Eero P. Simoncelli,et al.  Natural signal statistics and sensory gain control , 2001, Nature Neuroscience.

[11]  H. K. Hartline,et al.  THE EFFECTS OF SPATIAL SUMMATION IN THE RETINA ON THE EXCITATION OF THE FIBERS OF THE OPTIC NERVE , 1940 .

[12]  M. Meister Multineuronal codes in retinal signaling. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[13]  Tatyana O. Sharpee,et al.  Linking neural responses to behavior with information-preserving population vectors , 2019, Current Opinion in Behavioral Sciences.

[14]  Yoshua Bengio,et al.  Deep Sparse Rectifier Neural Networks , 2011, AISTATS.

[15]  Pamela Reinagel,et al.  Information theory in the brain , 2000, Current Biology.

[16]  Tatyana O. Sharpee,et al.  A Robust Feedforward Model of the Olfactory System , 2016, PLoS Comput. Biol..

[17]  R. Shapley,et al.  Linear and nonlinear spatial subunits in Y cat retinal ganglion cells. , 1976, The Journal of physiology.

[18]  Fred Rieke,et al.  Receptive field center-surround interactions mediate context-dependent spatial contrast encoding in the retina , 2018, bioRxiv.

[19]  H Barlow,et al.  Redundancy reduction revisited , 2001, Network.

[20]  Melanie Hartmann Spikes Exploring The Neural Code Computational Neuroscience , 2016 .

[21]  Christof Koch,et al.  Selectivity of pyramidal cells and interneurons in the human medial temporal lobe. , 2011, Journal of neurophysiology.

[22]  Hisao Nishijo,et al.  Neuronal correlates of face identification in the monkey anterior temporal cortical areas. , 2004, Journal of neurophysiology.

[23]  J. B. Demb,et al.  Functional Circuitry of the Retinal Ganglion Cell's Nonlinear Receptive Field , 1999, The Journal of Neuroscience.

[24]  Tatyana O Sharpee,et al.  Critical and maximally informative encoding between neural populations in the retina , 2014, Proceedings of the National Academy of Sciences.

[25]  William Bialek,et al.  Adaptive Rescaling Maximizes Information Transmission , 2000, Neuron.

[26]  D. Freedman,et al.  On the histogram as a density estimator:L2 theory , 1981 .

[27]  H. Sompolinsky,et al.  Benefits of Pathway Splitting in Sensory Coding , 2014, The Journal of Neuroscience.

[28]  Peter Sterling,et al.  Principles of Neural Design , 2015 .

[29]  Fred Rieke,et al.  Synaptic Rectification Controls Nonlinear Spatial Integration of Natural Visual Inputs , 2016, Neuron.

[30]  Tim Gollisch,et al.  Eye Smarter than Scientists Believed: Neural Computations in Circuits of the Retina , 2010, Neuron.

[31]  Terrence J. Sejnowski,et al.  An Information-Maximization Approach to Blind Separation and Blind Deconvolution , 1995, Neural Computation.

[32]  S. Laughlin A Simple Coding Procedure Enhances a Neuron's Information Capacity , 1981, Zeitschrift fur Naturforschung. Section C, Biosciences.

[33]  Geoffrey E. Hinton,et al.  Rectified Linear Units Improve Restricted Boltzmann Machines , 2010, ICML.

[34]  Vijay Balasubramanian,et al.  Receptive fields and functional architecture in the retina , 2009, The Journal of physiology.

[35]  C. Enroth-Cugell,et al.  The contrast sensitivity of retinal ganglion cells of the cat , 1966, The Journal of physiology.

[36]  James M. Jeanne,et al.  Convergence, Divergence, and Reconvergence in a Feedforward Network Improves Neural Speed and Accuracy , 2015, Neuron.

[37]  William Bialek,et al.  Synergy in a Neural Code , 2000, Neural Computation.

[38]  Michael J. Berry,et al.  Predictive information in a sensory population , 2013, Proceedings of the National Academy of Sciences.

[39]  Christopher Comer Spikes: Exploring the Neural Code. Computational Neuroscience.Fred Rieke , David Warland , Rob de Ruyter van Steveninck, William Bialek , 1998 .

[40]  Sang Joon Kim,et al.  A Mathematical Theory of Communication , 2006 .

[41]  A. Fairhall,et al.  Sensory adaptation , 2007, Current Opinion in Neurobiology.

[42]  P. Latham,et al.  Retinal ganglion cells act largely as independent encoders , 2001, Nature.

[43]  C. Enroth-Cugell,et al.  The receptive‐field spatial structure of cat retinal Y cells. , 1987, The Journal of physiology.

[44]  Charles F Stevens,et al.  What the fly’s nose tells the fly’s brain , 2015, Proceedings of the National Academy of Sciences.

[45]  Adrienne L. Fairhall,et al.  Efficiency and ambiguity in an adaptive neural code , 2001, Nature.

[46]  J. B. Demb,et al.  Functional Circuitry of the Retina. , 2015, Annual review of vision science.

[47]  M. Hasselmo,et al.  The role of expression and identity in the face-selective responses of neurons in the temporal visual cortex of the monkey , 1989, Behavioural Brain Research.

[48]  Guigang Zhang,et al.  Deep Learning , 2016, Int. J. Semantic Comput..

[49]  Qianyi Li,et al.  Optimal compressed sensing strategies for an array of nonlinear olfactory receptor neurons with and without spontaneous activity , 2019, Proceedings of the National Academy of Sciences.

[50]  Eric Shea-Brown,et al.  How Do Efficient Coding Strategies Depend on Origins of Noise in Neural Circuits? , 2016, PLoS Comput. Biol..

[51]  H. B. Barlow,et al.  Possible Principles Underlying the Transformations of Sensory Messages , 2012 .

[52]  Joseph J Atick,et al.  Could information theory provide an ecological theory of sensory processing? , 2011, Network.

[53]  Joseph J. Atick,et al.  Towards a Theory of Early Visual Processing , 1990, Neural Computation.

[54]  Li Zhaoping,et al.  Theoretical understanding of the early visual processes by data compression and data selection , 2006, Network.