On the nature of the conformable derivative and its applications to physics

The purpose of this work is to show that the Khalil and Katagampoula conformable derivatives are equivalent to the simple change of variables $x$ $\rightarrow $ $x^{α}/α,$ where $α$ is the order of the derivative operator, when applied to differential functions. Although this means no \textquotedblleft new mathematics\textquotedblright\ is obtained by working with these derivatives, it is a second purpose of this work to argue that there is still significant value in exploring the mathematics and physical applications of these derivatives. This work considers linear differential equations, self-adjointness, Sturm-Liouville systems, and integral transforms. A third purpose of this work is to contribute to the physical interpretation when these derivatives are applied to physics and engineering. Quantum mechanics serves as the primary backdrop for this development.

[1]  R. Herrmann Fractional Calculus: An Introduction for Physicists , 2011 .

[2]  D. Demirhan,et al.  Conformable Fractional Nikiforov—Uvarov Method , 2016 .

[3]  Jos'e Weberszpil,et al.  Variational approach and deformed derivatives , 2015, 1511.02835.

[4]  Prabhakar R. Deshmukh,et al.  CONVOLUTION STRUCTURE FOR TWO VERSION OF FRACTIONAL LAPLACE TRANSFORM , 2011 .

[5]  B. Achar,et al.  Dynamics of the fractional oscillator , 2001 .

[6]  D. Anderson Taylor’s Formula and Integral Inequalities for Conformable Fractional Derivatives , 2014, 1409.5888.

[7]  S. Hassani Mathematical physics : a modern introduction to Its foundations , 2013 .

[8]  Udita N. Katugampola A New Fractional Derivative with Classical Properties , 2014, 1410.6535.

[9]  Marko Petkovšek,et al.  A=B : 等式証明とコンピュータ , 1997 .

[10]  Alejandro Guerrero,et al.  On the numerical solution of the eigenvalue problem in fractional quantum mechanics , 2015, Commun. Nonlinear Sci. Numer. Simul..

[11]  Asim Gangopadhyaya,et al.  Supersymmetric Quantum Mechanics and Solvable Models , 2012, Symmetry.

[12]  M. Luo,et al.  Fractional corresponding operator in quantum mechanics and applications: A uniform fractional Schrödinger equation in form and fractional quantization methods , 2014 .

[14]  Udita N. Katugampola A NEW APPROACH TO GENERALIZED FRACTIONAL DERIVATIVES , 2011, 1106.0965.

[15]  R. Ansari,et al.  New exact solutions of nonlinear conformable time-fractional Boussinesq equations using the modified Kudryashov method , 2017 .

[16]  Liping Wang,et al.  Conformable derivative: Application to non-Darcian flow in low-permeability porous media , 2018, Appl. Math. Lett..

[17]  José António Tenreiro Machado,et al.  What is a fractional derivative? , 2015, J. Comput. Phys..

[18]  Li Kexue,et al.  Laplace transform and fractional differential equations , 2011 .

[19]  N. Laskin Fractional Schrödinger equation. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[20]  K. K. Sharma,et al.  Fractional Laplace transform , 2010, Signal Image Video Process..

[21]  A. Papoulis Systems and transforms with applications in optics , 1981 .

[22]  Delfim F. M. Torres,et al.  Existence of solution to a local fractional nonlinear differential equation , 2016, J. Comput. Appl. Math..

[23]  Guy Jumarie,et al.  Laplace's transform of fractional order via the Mittag-Leffler function and modified Riemann-Liouville derivative , 2009, Appl. Math. Lett..

[24]  F. Mainardi,et al.  Fractional Calculus: Quo Vadimus? (Where are we Going?) , 2015 .

[25]  N. Laskin Fractional quantum mechanics and Lévy path integrals , 1999, hep-ph/9910419.

[26]  Bruce J. West,et al.  Colloquium: Fractional calculus view of complexity: A tutorial , 2014 .

[27]  Thabet Abdeljawad,et al.  On conformable fractional calculus , 2015, J. Comput. Appl. Math..

[28]  Selccuk cS. Bayin Consistency problem of the solutions of the space fractional Schrödinger equation , 2013 .

[29]  Dumitru Baleanu,et al.  New exact solutions of Burgers’ type equations with conformable derivative , 2017 .

[30]  Claude Cohen-Tannoudji,et al.  Quantum Mechanics, Vol. 1 , 1991 .

[31]  V. Uchaikin Fractional Derivatives for Physicists and Engineers , 2013 .

[32]  F. Mainardi,et al.  Recent history of fractional calculus , 2011 .

[33]  Avinash Khare,et al.  Supersymmetry and quantum mechanics , 1995 .

[34]  M. Sababheh,et al.  A new definition of fractional derivative , 2014, J. Comput. Appl. Math..

[35]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[36]  N. Laskin,et al.  Fractional quantum mechanics , 2008, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[37]  A. Alsaedi,et al.  New properties of conformable derivative , 2015 .

[38]  Hongwei Zhou,et al.  Conformable derivative approach to anomalous diffusion , 2018 .

[39]  Half theory fractional angular momentum and the application of fractional derivatives to quantum mechanics , 2018 .

[40]  A review of supersymmetric quantum mechanics , 1985 .

[41]  Tofigh Allahviranloo,et al.  SOLVING FUZZY FRACTIONAL DIFFERENTIAL EQUATIONS BY FUZZY LAPLACE TRANSFORMS , 2012 .

[42]  Moustafa N. Aboushelib,et al.  A 5-year comparison of marginal bone level following immediate loading of single-tooth implants placed in healed alveolar ridges and extraction sockets in the maxilla , 2014, Front. Physiol..

[43]  Vasily E. Tarasov No nonlocality. No fractional derivative , 2018, Commun. Nonlinear Sci. Numer. Simul..

[44]  Xiaoyi Guo,et al.  Some physical applications of fractional Schrödinger equation , 2006 .

[45]  M. Luo,et al.  General conformable fractional derivative and its physical interpretation , 2017, Calcolo.

[46]  D. Anderson,et al.  Properties of the Katugampola fractional derivative with potential application in quantum mechanics , 2015 .

[47]  Nick Laskin Principles of Fractional Quantum Mechanics , 2010 .

[48]  M. Jeng,et al.  On the nonlocality of the fractional Schrödinger equation , 2010 .

[49]  Yuri Luchko Fractional Schrödinger equation for a particle moving in a potential well , 2013 .

[50]  H. Fakhri Relations between 1D shape invariant potentials and the commutation relations of the Lie algebra sl(2,c) , 2003 .

[51]  Wei Zhao,et al.  A new definition of fractional derivative , 2019, International Journal of Non-Linear Mechanics.