Fully solution-processed inverted polymer solar cells with laminated nanowire electrodes.

We demonstrate organic photovoltaic cells in which every layer is deposited by solution processing on opaque metal substrates, with efficiencies similar to those obtained in conventional device structures on transparent substrates. The device architecture is enabled by solution-processed, laminated silver nanowire films serving as the top transparent anode. The cells are based on the regioregular poly(3-hexylthiophene) and C(61) butyric acid methyl ester bulk heterojunction and reach an efficiency of 2.5% under 100 mW/cm(2) of AM 1.5G illumination. The metal substrates are adequate barriers to moisture and oxygen, in contrast to transparent plastics that have previously been used, giving rise to the possibility of roll-to-roll solution-processed solar cells that are packaged by lamination to glass substrates, combining the cost advantage of roll-to-roll processing with the barrier properties of glass and metal foil.

[1]  Yi Cui,et al.  Solution-processed metal nanowire mesh transparent electrodes. , 2008, Nano letters.

[2]  D. Khang,et al.  The surface engineering of top electrode in inverted polymer bulk-heterojunction solar cells , 2008 .

[3]  C. Brabec,et al.  2.5% efficient organic plastic solar cells , 2001 .

[4]  A. Zakhidov,et al.  Monolithic parallel tandem organic photovoltaic cell with transparent carbon nanotube interlayer , 2009 .

[5]  G. Eda,et al.  Large-area ultrathin films of reduced graphene oxide as a transparent and flexible electronic material. , 2008, Nature nanotechnology.

[6]  S. Park,et al.  Mechanical Stability of Externally Deformed Indium–Tin–Oxide Films on Polymer Substrates , 2003 .

[7]  Liangbing Hu,et al.  Organic solar cells with carbon nanotube network electrodes , 2006 .

[8]  Takayuki Kuwabara,et al.  Highly durable inverted-type organic solar cell using amorphous titanium oxide as electron collection electrode inserted between ITO and organic layer , 2008 .

[9]  J. Han,et al.  Transparent conducting metal electrode for top emission organic light-emitting devices: Ca–Ag double layer , 2004 .

[10]  M. Bergsmann,et al.  Reel‐to‐reel Vacuum Metallization , 2006 .

[11]  Christoph J. Brabec,et al.  Highly efficient inverted organic photovoltaics using solution based titanium oxide as electron selective contact , 2006 .

[12]  Donal D. C. Bradley,et al.  A strong regioregularity effect in self-organizing conjugated polymer films and high-efficiency polythiophene:fullerene solar cells , 2006 .

[13]  N. S. Sariciftci,et al.  Conjugated polymer-based organic solar cells. , 2007, Chemical reviews.

[14]  Viktor Andersson,et al.  Folded reflective tandem polymer solar cell doubles efficiency , 2007 .

[15]  F. Krebs,et al.  Stability/degradation of polymer solar cells , 2008 .

[16]  Gang Li,et al.  Investigation of annealing effects and film thickness dependence of polymer solar cells based on poly(3-hexylthiophene) , 2005 .

[17]  R. Stoltenberg,et al.  Evaluation of solution-processed reduced graphene oxide films as transparent conductors. , 2008, ACS nano.

[18]  Vishal Shrotriya,et al.  Efficient inverted polymer solar cells , 2006 .

[19]  K. Seki,et al.  ENERGY LEVEL ALIGNMENT AND INTERFACIAL ELECTRONIC STRUCTURES AT ORGANIC/METAL AND ORGANIC/ORGANIC INTERFACES , 1999 .

[20]  Yang Yang,et al.  High-efficiency solution processable polymer photovoltaic cells by self-organization of polymer blends , 2005 .

[21]  Gang Li,et al.  A Semi‐transparent Plastic Solar Cell Fabricated by a Lamination Process , 2008 .

[22]  K. Zweibel,et al.  Thin film PV manufacturing: Materials costs and their optimization , 2000 .

[23]  Husnu Emrah Unalan,et al.  Conducting and transparent single-wall carbon nanotube electrodes for polymer-fullerene solar cells , 2005 .

[24]  Christoph J. Brabec,et al.  Interface modification for highly efficient organic photovoltaics , 2008 .

[25]  Max Shtein,et al.  Fiber based organic photovoltaic devices , 2008 .

[26]  Zhenan Bao,et al.  Organic solar cells with solution-processed graphene transparent electrodes , 2008 .

[27]  Stephen R. Forrest,et al.  Efficient bulk heterojunction photovoltaic cells using small-molecular-weight organic thin films , 2003, Nature.

[28]  Peter Peumans,et al.  An effective light trapping configuration for thin-film solar cells , 2007 .

[29]  C. Brabec,et al.  Plastic Solar Cells , 2001 .

[30]  Gang Li,et al.  Highly efficient inverted polymer solar cell by low temperature annealing of Cs2CO3 interlayer , 2008 .

[31]  K. Müllen,et al.  Transparent, conductive graphene electrodes for dye-sensitized solar cells. , 2008, Nano letters.

[32]  Yang Yang,et al.  Low-temperature solution processing of graphene-carbon nanotube hybrid materials for high-performance transparent conductors. , 2009, Nano letters.

[33]  J. Meiss,et al.  Improved light harvesting in tin-doped indum oxide (ITO)-free inverted bulk-heterojunction organic solar cells using capping layers , 2008 .

[34]  Michael Niggemann,et al.  Organic solar cells using inverted layer sequence , 2005 .

[35]  Donal D. C. Bradley,et al.  Efficient charge collection in hybrid polymer/TiO2 solar cells using poly(ethylenedioxythiophene)/polystyrene sulphonate as hole collector , 2005 .

[36]  Sean E. Shaheen,et al.  Inverted bulk-heterojunction organic photovoltaic device using a solution-derived ZnO underlayer , 2006 .

[37]  T. Nyberg An alternative method to build organic photodiodes , 2004 .