Direct observation of base-pair stepping by RNA polymerase

[1]  Steven M Block,et al.  Passive all-optical force clamp for high-resolution laser trapping. , 2005, Physical review letters.

[2]  T. Tahirov,et al.  Structural basis of transcription inhibition by antibiotic streptolydigin. , 2005, Molecular cell.

[3]  Mahadeb Pal,et al.  The role of the transcription bubble and TFIIB in promoter clearance by RNA polymerase II. , 2005, Molecular cell.

[4]  Michael Feig,et al.  Dynamic error correction and regulation of downstream bubble opening by human RNA polymerase II. , 2005, Molecular cell.

[5]  F. Heslot,et al.  Unravelling the mechanism of RNA-polymerase forward motion by using mechanical force. , 2005, Physical review letters.

[6]  Piero R Bianco,et al.  Direct visualization of RecBCD movement reveals cotranslocation of the RecD motor after chi recognition. , 2005, Molecular cell.

[7]  Hector H. Huang,et al.  Mechanical unfolding intermediates observed by single-molecule force spectroscopy in a fibronectin type III module. , 2005, Journal of molecular biology.

[8]  Arkady Mustaev,et al.  A Ratchet Mechanism of Transcription Elongation and Its Control , 2005, Cell.

[9]  Michelle D. Wang,et al.  Sequence-dependent kinetic model for transcription elongation by RNA polymerase. , 2004, Journal of molecular biology.

[10]  D. Bushnell,et al.  Structural Basis of Transcription Nucleotide Selection by Rotation in the RNA Polymerase II Active Center , 2004, Cell.

[11]  Chunfen Zhang,et al.  Transcription factors IIF and IIS and nucleoside triphosphate substrates as dynamic probes of the human RNA polymerase II mechanism. , 2004, Journal of molecular biology.

[12]  James A. Spudich,et al.  The Mechanism of Myosin VI Translocation and Its Load-Induced Anchoring , 2004, Cell.

[13]  Steven M Block,et al.  Forward and reverse motion of single RecBCD molecules on DNA. , 2004, Biophysical journal.

[14]  B. C. Carter,et al.  Cytoplasmic dynein functions as a gear in response to load , 2004, Nature.

[15]  Thomas A Steitz,et al.  The Structural Mechanism of Translocation and Helicase Activity in T7 RNA Polymerase , 2004, Cell.

[16]  R. Vale,et al.  Kinesin Walks Hand-Over-Hand , 2004, Science.

[17]  Steven M. Block,et al.  Kinesin Moves by an Asymmetric Hand-OverHand Mechanism , 2003 .

[18]  L. Brieba,et al.  Discontinuous movement and conformational change during pausing and termination by T7 RNA polymerase , 2003, The EMBO journal.

[19]  Joshua W. Shaevitz,et al.  Backtracking by single RNA polymerase molecules observed at near-base-pair resolution , 2003, Nature.

[20]  Elio A. Abbondanzieri,et al.  Ubiquitous Transcriptional Pausing Is Independent of RNA Polymerase Backtracking , 2003, Cell.

[21]  Ravindra V Dalal,et al.  Sequence-Dependent Pausing of Single Lambda Exonuclease Molecules , 2003, Science.

[22]  D. Erie,et al.  Downstream DNA Sequence Effects on Transcription Elongation , 2003, Journal of Biological Chemistry.

[23]  Charles C. Richardson,et al.  University of Groningen Single-Molecule Kinetics of λ Exonuclease Reveal Base Dependence and Dynamic Disorder , 2018 .

[24]  Joshua W. Shaevitz,et al.  Probing the kinesin reaction cycle with a 2D optical force clamp , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[25]  D. Erie,et al.  Downstream DNA Sequence Effects on Transcription Elongation ALLOSTERIC BINDING OF NUCLEOSIDE TRIPHOSPHATES FACILITATES TRANSLOCATION VIA A RATCHET MOTION* , 2003 .

[26]  X. Xie,et al.  Single-molecule kinetics of lambda exonuclease reveal base dependence and dynamic disorder. , 2003, Science.

[27]  James A. Spudich,et al.  Role of the lever arm in the processive stepping of myosin V , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[28]  Michelle D. Wang,et al.  Single molecule analysis of RNA polymerase elongation reveals uniform kinetic behavior , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[29]  Nancy R. Forde,et al.  Using mechanical force to probe the mechanism of pausing and arrest during continuous elongation by Escherichia coli RNA polymerase , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[30]  Joshua W Shaevitz,et al.  An automated two-dimensional optical force clamp for single molecule studies. , 2002, Biophysical journal.

[31]  Jeffrey W. Roberts,et al.  Restructuring of an RNA polymerase holoenzyme elongation complex by lambdoid phage Q proteins , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[32]  Hiroyasu Itoh,et al.  Resolution of distinct rotational substeps by submillisecond kinetic analysis of F1-ATPase , 2001, Nature.

[33]  J. Gelles,et al.  χ-Sequence recognition and DNA translocation by single RecBCD helicase/nuclease molecules , 2001, Nature.

[34]  Hiroyasu Itoh,et al.  Direct observation of DNA rotation during transcription by Escherichia coli RNA polymerase , 2001, Nature.

[35]  R. Landick,et al.  Pausing by bacterial RNA polymerase is mediated by mechanistically distinct classes of signals. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[36]  R. Vale,et al.  The way things move: looking under the hood of molecular motor proteins. , 2000, Science.

[37]  T. Steitz,et al.  Structure of a transcribing T7 RNA polymerase initiation complex. , 1999, Science.

[38]  Michelle D. Wang,et al.  Force and velocity measured for single molecules of RNA polymerase. , 1998, Science.

[39]  Mark J. Schnitzer,et al.  Kinesin hydrolyses one ATP per 8-nm step , 1997, Nature.

[40]  M. Kashlev,et al.  RNA Polymerase Switches between Inactivated and Activated States By Translocating Back and Forth along the DNA and the RNA* , 1997, The Journal of Biological Chemistry.

[41]  E. Nudler,et al.  The RNA–DNA Hybrid Maintains the Register of Transcription by Preventing Backtracking of RNA Polymerase , 1997, Cell.

[42]  R. Sousa,et al.  A model for the mechanism of polymerase translocation. , 1997, Journal of molecular biology.

[43]  D. K. Hawley,et al.  Promoter Proximal Sequences Modulate RNA Polymerase II Elongation by a Novel Mechanism , 1996, Cell.

[44]  S. Chu,et al.  Quantitative measurements of force and displacement using an optical trap. , 1996, Biophysical journal.

[45]  Steven M. Block,et al.  Transcription Against an Applied Force , 1995, Science.

[46]  Steven M. Block,et al.  Analysis of high resolution recordings of motor movement. , 1995, Biophysical journal.

[47]  M. Schnitzer,et al.  Statistical kinetics of processive enzymes. , 1995, Cold Spring Harbor symposia on quantitative biology.

[48]  Christoph F. Schmidt,et al.  Direct observation of kinesin stepping by optical trapping interferometry , 1993, Nature.

[49]  R. Dickerson,et al.  Analysis of local helix geometry in three B-DNA decamers and eight dodecamers. , 1991, Journal of molecular biology.

[50]  M. Sheetz,et al.  Tracking kinesin-driven movements with nanometre-scale precision , 1988, Nature.

[51]  M. Chamberlin,et al.  Ribonucleic acid chain elongation by Escherichia coli ribonucleic acid polymerase. I. Isolation of ternary complexes and the kinetics of elongation. , 1974, The Journal of biological chemistry.

[52]  F. Crick,et al.  Molecular Structure of Nucleic Acids: A Structure for Deoxyribose Nucleic Acid , 1974, Nature.

[53]  Nature of articles , 2022, SAIEE Africa Research Journal.