Fault-Tolerant Cycle Embedding in Cartesian Product Graphs: Edge-Pancyclicity and Edge-Bipancyclicity with Faulty Edges

A graph G is called k-edge-fault edge-bipancyclic (k-edge-fault edge-r-pancyclic) if after deleting k edges from G, every edge in the resulting graph lies in a cycle of every even length from 4 to IV (G)I (a cycle of every length from r to IV(G)I), inclusively. In this paper, given two graphs G and H, which satisfy some specific properties, the edge-fault edge-bipancyclicity and edge-fault edge-r-pancyclicity (r is decided on the properties of G and H) of Cartesian product graphs G x Hare efficiently evaluated. The obtained results are applied to two multiprocessor systems, the nearest neighbor mesh hypercubes and generalized hypercubes, both of which belong to Cartesian product graphs.

[1]  Jun-Ming Xu,et al.  Edge-fault-tolerant properties of hypercubes and folded hypercubes , 2006, Australas. J Comb..

[2]  Sun-Yuan Hsieh,et al.  Pancyclicity of Matching Composition Networks under the Conditional Fault Model , 2012, IEEE Transactions on Computers.

[3]  Ming-Syan Chen,et al.  Processor Allocation in an N-Cube Multiprocessor Using Gray Codes , 1987, IEEE Transactions on Computers.

[4]  Mehran Mesbahi,et al.  Controllability and Observability of Network-of-Networks via Cartesian Products , 2014, IEEE Transactions on Automatic Control.

[5]  Jung-Sheng Fu,et al.  Edge-fault-tolerant pancyclicity of alternating group graphs , 2009, Networks.

[6]  Sheldon B. Akers,et al.  A Group-Theoretic Model for Symmetric Interconnection Networks , 1989, IEEE Trans. Computers.

[7]  Bih-Sheue Shieh,et al.  On connectivity of the Cartesian product of two graphs , 1999, Appl. Math. Comput..

[8]  Jing Li,et al.  Edge-bipancyclicity of the k-ary n-cubes with faulty nodes and edges , 2011, Inf. Sci..

[9]  Shahram Latifi,et al.  Optimal ring embedding in hypercubes with faulty links , 1992, [1992] Digest of Papers. FTCS-22: The Twenty-Second International Symposium on Fault-Tolerant Computing.

[10]  S. Lakshmivarahan,et al.  A new class of interconnection networks based on the alternating group , 1993, Networks.

[11]  Xiao-Dong Hu,et al.  Edge-bipancyclicity of star graphs under edge-fault tolerant , 2006, Appl. Math. Comput..

[12]  F. Leighton,et al.  Introduction to Parallel Algorithms and Architectures: Arrays, Trees, Hypercubes , 1991 .

[13]  Arnold L. Rosenberg,et al.  Product-Shuffle Networks: Toward Reconciling Shuffles and Butterflies , 1992, Discret. Appl. Math..

[14]  Sun-Yuan Hsieh,et al.  Conditional Edge-Fault Hamiltonicity of Cartesian Product Graphs , 2013, IEEE Transactions on Parallel and Distributed Systems.

[15]  Sy-Yen Kuo,et al.  Distributed Fault-Tolerant Ring Embedding and Reconfiguration in Hypercubes , 1999, IEEE Trans. Computers.

[16]  Abdel Elah Al-Ayyoub,et al.  The Cross Product of Interconnection Networks , 1997, IEEE Trans. Parallel Distributed Syst..

[17]  Dharma P. Agrawal,et al.  Generalized Hypercube and Hyperbus Structures for a Computer Network , 1984, IEEE Transactions on Computers.

[18]  Jou-Ming Chang,et al.  Fault-tolerant cycle-embedding in alternating group graphs , 2008, Appl. Math. Comput..

[19]  Kaishun Wang,et al.  Edge-fault-tolerant pancyclicity of arrangement graphs , 2014, Inf. Sci..

[20]  Arunabha Sen,et al.  On some topological properties of hypercube, incomplete hypercube and supercube , 1993, [1993] Proceedings Seventh International Parallel Processing Symposium.

[21]  Sun-Yuan Hsieh,et al.  Panconnectivity and edge-pancyclicity of 3-ary N-cubes , 2007, The Journal of Supercomputing.

[22]  Abdou Youssef,et al.  A general framework for developing adaptive fault-tolerant routing algorithms , 1993 .

[23]  Jun-Ming Xu,et al.  Edge-fault-tolerant edge-bipancyclicity of hypercubes , 2005, Inf. Process. Lett..

[24]  Jing Li,et al.  k-Pancyclicity of k-ary n-Cube Networks under the Conditional Fault Model , 2012, IEEE Transactions on Parallel and Distributed Systems.

[25]  Abdel Elah Al-Ayyoub,et al.  Fault Diameter of k-ary n-cube Networks , 1997, IEEE Trans. Parallel Distributed Syst..

[26]  Ping-Ying Tsai,et al.  Cycle Embedding in Alternating Group Graphs with Faulty Elements , 2013, EMC/HumanCom.

[27]  Justie Su-tzu Juan,et al.  Embedding Cycles and Paths in Product Networks and Their Applications to Multiprocessor Systems , 2012, IEEE Transactions on Parallel and Distributed Systems.

[28]  Antonio Fernández,et al.  Products of Networks with Logarithmic Diameter and Fixed Degree , 1995, IEEE Trans. Parallel Distributed Syst..

[29]  Jimmy J. M. Tan,et al.  Hamiltonian circuit and linear array embeddings in faulty k-ary n-cubes , 2007, J. Parallel Distributed Comput..

[30]  Jung-Sheng Fu Vertex-pancyclicity of augmented cubes with maximal faulty edges , 2014, Inf. Sci..

[31]  Sabine R. Öhring,et al.  Optimal fault-tolerant communication algorithms on product networks using spanning trees , 1994, Proceedings of 1994 6th IEEE Symposium on Parallel and Distributed Processing.

[32]  Shahram Latifi,et al.  Properties and Performance of Folded Hypercubes , 1991, IEEE Trans. Parallel Distributed Syst..

[33]  Biing-Feng Wang,et al.  Constructing Edge-Disjoint Spanning Trees in Product Networks , 2003, IEEE Trans. Parallel Distributed Syst..

[34]  Iain A. Stewart,et al.  A Multipath Analysis of Biswapped Networks , 2011, Comput. J..

[35]  Abdel Elah Al-Ayyoub,et al.  Minimal Fault Diameter for Highly Resilient Product Networks , 2000, IEEE Trans. Parallel Distributed Syst..

[36]  D. S. SzyId,et al.  Parallel Computation: Models And Methods , 1998, IEEE Concurrency.