Large scale syntheses of colloidal nanomaterials

[1]  Cherie R. Kagan,et al.  Building devices from colloidal quantum dots , 2016, Science.

[2]  Klavs F Jensen,et al.  Feedback in Flow for Accelerated Reaction Development. , 2016, Accounts of chemical research.

[3]  A. deMello,et al.  Scalable production of CuInS2/ZnS quantum dots in a two-step droplet-based microfluidic platform , 2016 .

[4]  Taeghwan Hyeon,et al.  Nonclassical nucleation and growth of inorganic nanoparticles , 2016 .

[5]  Feng Gao,et al.  Colloidal metal halide perovskite nanocrystals: synthesis, characterization, and applications , 2016 .

[6]  Edward H. Sargent,et al.  Perovskite photonic sources , 2016, Nature Photonics.

[7]  D. Mitzi,et al.  Inorganic Perovskites : Structural Versatility for Functional Materials Design , 2016 .

[8]  Klavs F. Jensen,et al.  Shape-controlled continuous synthesis of metal nanostructures. , 2016, Nanoscale.

[9]  Paul Meredith,et al.  Organohalide Perovskites for Solar Energy Conversion. , 2016, Accounts of chemical research.

[10]  Andrew J. deMello,et al.  Synthesis of Cesium Lead Halide Perovskite Nanocrystals in a Droplet-Based Microfluidic Platform: Fast Parametric Space Mapping. , 2016, Nano letters.

[11]  Taeghwan Hyeon,et al.  Designed Assembly and Integration of Colloidal Nanocrystals for Device Applications , 2016, Advanced materials.

[12]  Thomas Bein,et al.  A Long-Term View on Perovskite Optoelectronics. , 2016, Accounts of chemical research.

[13]  J. Pérez‐Prieto,et al.  Organic-inorganic and all-inorganic lead halide nanoparticles [Invited]. , 2016, Optics express.

[14]  Jung Ho Yu,et al.  Route to the Smallest Doped Semiconductor: Mn(2+)-Doped (CdSe)13 Clusters. , 2015, Journal of the American Chemical Society.

[15]  P. Kenis,et al.  High temperature continuous flow synthesis of CdSe/CdS/ZnS, CdS/ZnS, and CdSeS/ZnS nanocrystals. , 2015, Nanoscale.

[16]  Younan Xia,et al.  Toward continuous and scalable production of colloidal nanocrystals by switching from batch to droplet reactors. , 2015, Chemical Society reviews.

[17]  J. Pérez‐Prieto,et al.  Organometal Halide Perovskites: Bulk Low‐Dimension Materials and Nanoparticles , 2015 .

[18]  Ji Hoon Kim,et al.  Wearable red–green–blue quantum dot light-emitting diode array using high-resolution intaglio transfer printing , 2015, Nature Communications.

[19]  Christopher H. Hendon,et al.  Nanocrystals of Cesium Lead Halide Perovskites (CsPbX3, X = Cl, Br, and I): Novel Optoelectronic Materials Showing Bright Emission with Wide Color Gamut , 2015, Nano letters.

[20]  Cherie R. Kagan,et al.  Prospects of nanoscience with nanocrystals. , 2015, ACS nano.

[21]  Moon J. Kim,et al.  Continuous and scalable production of well-controlled noble-metal nanocrystals in milliliter-sized droplet reactors. , 2014, Nano letters.

[22]  Steven V Ley,et al.  Flow chemistry meets advanced functional materials. , 2014, Chemistry.

[23]  Andrew J. deMello,et al.  Fast and Reliable Metamodeling of Complex Reaction Spaces Using Universal Kriging , 2014 .

[24]  Richard M Maceiczyk,et al.  Nanocrystal synthesis in microfluidic reactors: where next? , 2014, Lab on a chip.

[25]  Nguyen T. K. Thanh,et al.  Mechanisms of nucleation and growth of nanoparticles in solution. , 2014, Chemical reviews.

[26]  E. Waclawik,et al.  Colloidal semiconductor nanocrystals : controlled synthesis and surface chemistry in organic media , 2014 .

[27]  Petra Schneider,et al.  Accessing new chemical entities through microfluidic systems. , 2014, Angewandte Chemie.

[28]  A. deMello,et al.  Facile Droplet-based Microfluidic Synthesis of Monodisperse IV–VI Semiconductor Nanocrystals with Coupled In-Line NIR Fluorescence Detection , 2014 .

[29]  Klavs F Jensen,et al.  Tools for chemical synthesis in microsystems. , 2014, Lab on a chip.

[30]  C. Rodríguez-Abreu,et al.  Large-Scale Synthesis of Colloidal Fe3O4 Nanoparticles Exhibiting High Heating Efficiency in Magnetic Hyperthermia , 2014 .

[31]  N. Duffy,et al.  Cu₂ZnSnS(4x)Se(4(1-x)) solar cells from polar nanocrystal inks. , 2014, Journal of the American Chemical Society.

[32]  K. Iyer,et al.  Controlling nanomaterial synthesis, chemical reactions and self assembly in dynamic thin films. , 2014, Chemical Society reviews.

[33]  C. Serna,et al.  Large scale production of biocompatible magnetite nanocrystals with high saturation magnetization values through green aqueous synthesis. , 2013, Journal of materials chemistry. B.

[34]  A. deMello,et al.  The past, present and potential for microfluidic reactor technology in chemical synthesis. , 2013, Nature chemistry.

[35]  O. Bakr,et al.  Rapid continuous flow synthesis of high-quality silver nanocubes and nanospheres , 2013 .

[36]  O. Voznyy,et al.  Automated synthesis of photovoltaic-quality colloidal quantum dots using separate nucleation and growth stages. , 2013, ACS nano.

[37]  John C. deMello,et al.  Segmented Flow Reactors for Nanocrystal Synthesis , 2013, Advanced materials.

[38]  A. Eychmüller,et al.  Colloidal semiconductor nanocrystals: the aqueous approach. , 2013, Chemical Society reviews.

[39]  S. Mourdikoudis,et al.  Oleylamine in Nanoparticle Synthesis , 2013 .

[40]  Saif A. Haque,et al.  Large-scale synthesis of nanocrystals in a multichannel droplet reactor , 2013 .

[41]  Shouheng Sun,et al.  High-Temperature Solution-Phase Syntheses of Metal-Oxide Nanocrystals , 2013 .

[42]  Igor L. Medintz,et al.  Functionalizing nanoparticles with biological molecules: developing chemistries that facilitate nanotechnology. , 2013, Chemical reviews.

[43]  V. Cabuil,et al.  Continuous multistep microfluidic assisted assembly of fluorescent, plasmonic, and magnetic nanostructures. , 2013, Angewandte Chemie.

[44]  Samuel Woojoo Jun,et al.  Sizing by weighing: characterizing sizes of ultrasmall-sized iron oxide nanocrystals using MALDI-TOF mass spectrometry. , 2013, Journal of the American Chemical Society.

[45]  N. Duffy,et al.  Non-injection synthesis of Cu2ZnSnS4 nanocrystals using a binary precursor and ligand approach , 2013 .

[46]  K. Bourzac Quantum dots go on display , 2013, Nature.

[47]  Z. Yin,et al.  A general method for the large-scale synthesis of uniform ultrathin metal sulphide nanocrystals , 2012, Nature Communications.

[48]  V. Cabuil,et al.  Synthesis of cobalt ferrite nanoparticles in continuous-flow microreactors , 2012 .

[49]  F. Wise,et al.  A generic method for rational scalable synthesis of monodisperse metal sulfide nanocrystals. , 2012, Nano letters.

[50]  Hedi Mattoussi,et al.  The state of nanoparticle-based nanoscience and biotechnology: progress, promises, and challenges. , 2012, ACS nano.

[51]  M. Gijs,et al.  Controlled synthesis of fluorescent silica nanoparticles inside microfluidic droplets. , 2012, Lab on a chip.

[52]  S. Miao,et al.  Synthesis of monodisperse cadmium phosphide nanoparticles using ex-situ produced phosphine. , 2012, ACS nano.

[53]  Samuel Woojoo Jun,et al.  Large-scale synthesis of ultra-small-sized silver nanoparticles. , 2012, Chemphyschem : a European journal of chemical physics and physical chemistry.

[54]  Matthew G. Panthani,et al.  Nanocrystals for electronics. , 2012, Annual review of chemical and biomolecular engineering.

[55]  C. T. Riche,et al.  Two-phase microfluidic droplet flows of ionic liquids for the synthesis of gold and silver nanoparticles. , 2012, ACS applied materials & interfaces.

[56]  S. Kuhn,et al.  Size-controlled flow synthesis of gold nanoparticles using a segmented flow microfluidic platform. , 2012, Langmuir : the ACS journal of surfaces and colloids.

[57]  K. Iyer,et al.  Microfluidic fabrication of cationic curcumin nanoparticles as an anti-cancer agent. , 2012, Nanoscale.

[58]  A. deMello,et al.  Direct synthesis of dextran-coated superparamagnetic iron oxide nanoparticles in a capillary-based droplet reactor , 2012 .

[59]  R. Bellabarba,et al.  Scalable strategies for the synthesis of well-defined copper metal and oxide nanocrystals. , 2012, Chemical Society reviews.

[60]  T. Hyeon,et al.  n-Type nanostructured thermoelectric materials prepared from chemically synthesized ultrathin Bi2Te3 nanoplates. , 2012, Nano letters.

[61]  A. Cabot,et al.  Continuous production of Cu2ZnSnS4 nanocrystals in a flow reactor. , 2012, Journal of the American Chemical Society.

[62]  Sang-Wook Kim,et al.  Large-Scale Synthesis of InPZnS Alloy Quantum Dots with Dodecanethiol as a Composition Controller , 2012 .

[63]  V. Tran,et al.  Sustainable Synthesis of Semiconductor Nanoparticles in a Continuous Flow Reactor , 2012 .

[64]  M. A. Malik,et al.  Flow reactor synthesis of CdSe, CdS, CdSe/CdS and CdSeS nanoparticles from single molecular precursor(s) , 2011 .

[65]  Hyung Dae Jin,et al.  Continuous synthesis of SnTe nanorods , 2011 .

[66]  Olivier Renard,et al.  Rational design of the gram-scale synthesis of nearly monodisperse semiconductor nanocrystals , 2011, Nanoscale research letters.

[67]  Taeghwan Hyeon,et al.  Large-scale synthesis of uniform and extremely small-sized iron oxide nanoparticles for high-resolution T1 magnetic resonance imaging contrast agents. , 2011, Journal of the American Chemical Society.

[68]  Cao-Thang Dinh,et al.  Large-scale synthesis of uniform silver orthophosphate colloidal nanocrystals exhibiting high visible light photocatalytic activity. , 2011, Chemical communications.

[69]  Yadong Li,et al.  Controlled synthesis of wurtzite CuInS2 nanocrystals and their side-by-side nanorod assemblies , 2011 .

[70]  J. deMello,et al.  A stable droplet reactor for high temperature nanocrystal synthesis. , 2011, Lab on a chip.

[71]  Anton P. J. Middelberg,et al.  Nanoparticle synthesis in microreactors , 2011 .

[72]  C. Raston,et al.  A seedless approach to continuous flow synthesis of gold nanorods. , 2011, Chemical communications.

[73]  Paul Bowen,et al.  Precipitation of Nanosized and Nanostructured Powders: Process Intensification and Scale-Out Using a Segmented Flow Tubular Reactor (SFTR) , 2011 .

[74]  T. Teranishi,et al.  Homoepitaxial size control and large-scale synthesis of highly monodisperse amine-protected palladium nanoparticles. , 2011, Small.

[75]  Klavs F Jensen,et al.  Investigation of indium phosphide nanocrystal synthesis using a high-temperature and high-pressure continuous flow microreactor. , 2011, Angewandte Chemie.

[76]  A. Nightingale,et al.  Microscale synthesis of quantum dots , 2010 .

[77]  T. Mirkovic,et al.  Noninjection gram-scale synthesis of monodisperse pyramidal CuInS2 nanocrystals and their size-dependent properties. , 2010, ACS nano.

[78]  Yujun Song,et al.  Microfluidic synthesis of Fe nanoparticles , 2010 .

[79]  Hiroyuki Nakamura,et al.  Combinatorial Synthesis of CdSe Nanoparticles Using Microreactors , 2010 .

[80]  T. Endo,et al.  Microflow reactor synthesis of palladium nanoparticles stabilized with poly(benzyl ether) dendron ligands , 2010 .

[81]  K. Jensen,et al.  Synthesis of micro and nanostructures in microfluidic systems. , 2010, Chemical Society reviews.

[82]  M. Kovalenko,et al.  Prospects of colloidal nanocrystals for electronic and optoelectronic applications. , 2010, Chemical reviews.

[83]  Saif A. Khan,et al.  Droplet-based microfluidic synthesis of anisotropic metal nanocrystals. , 2009, Small.

[84]  Large-scale synthesis and characterization of monodisperse Fe3O4 nanocrystals , 2009 .

[85]  A. Nightingale,et al.  Controlled synthesis of III-V quantum dots in microfluidic reactors. , 2009, Chemphyschem : a European journal of chemical physics and physical chemistry.

[86]  C. Y. Tai,et al.  Preparation of Silver Nanoparticles Using a Spinning Disk Reactor in a Continuous Mode , 2009 .

[87]  Jung Ho Yu,et al.  Large-scale soft colloidal template synthesis of 1.4 nm thick CdSe nanosheets. , 2009, Angewandte Chemie.

[88]  A. M. Dehkordi,et al.  Synthesis of Barium Sulfate Nanoparticles Using a Spinning Disk Reactor: Effects of Supersaturation, Disk Rotation Speed, Free Ion Ratio, and Disk Diameter , 2009 .

[89]  Ming-Hui Chang,et al.  Synthesis of silver particles below 10 nm using spinning disk reactor , 2009 .

[90]  Yujun Song,et al.  Nearly Monodispersion CoSm Alloy Nanoparticles Formed by an In-situ Rapid Cooling and Passivating Microfluidic Process , 2009, Nanoscale research letters.

[91]  Qinghua Xu,et al.  A simple method for large scale synthesis of highly monodisperse gold nanoparticles at room temperature and their electron relaxation properties , 2009, Nanotechnology.

[92]  Zexiang Shen,et al.  Simple and rapid synthesis of ultrathin gold nanowires, their self-assembly and application in surface-enhanced Raman scattering. , 2009, Chemical communications.

[93]  H. Kwon,et al.  Gram‐Scale Synthesis of Cu2O Nanocubes and Subsequent Oxidation to CuO Hollow Nanostructures for Lithium‐Ion Battery Anode Materials , 2009 .

[94]  S. Tu,et al.  Synthesis of Monodisperse Nanocrystals via Microreaction: Open-to-Air Synthesis with Oleylamine as a Coligand , 2009, Nanoscale research letters.

[95]  Gwo-Bin Lee,et al.  Biomedical microdevices synthesis of iron oxide nanoparticles using a microfluidic system , 2009, Biomedical microdevices.

[96]  Klavs F. Jensen,et al.  Supercritical Continuous‐Microflow Synthesis of Narrow Size Distribution Quantum Dots , 2008 .

[97]  Youngil Lee,et al.  Large-scale synthesis of copper nanoparticles by chemically controlled reduction for applications of inkjet-printed electronics , 2008, Nanotechnology.

[98]  Andrew D Griffiths,et al.  Droplet-based microreactors for the synthesis of magnetic iron oxide nanoparticles. , 2008, Angewandte Chemie.

[99]  Josef Hormes,et al.  Microfluidic synthesis of nanomaterials. , 2008, Small.

[100]  K. Suslick,et al.  Quantum Dots from Chemical Aerosol Flow Synthesis: Preparation, Characterization, and Cellular Imaging , 2008 .

[101]  Zheng Gu,et al.  Green chemistry for large-scale synthesis of semiconductor quantum dots. , 2008, Langmuir : the ACS journal of surfaces and colloids.

[102]  Colin L. Raston,et al.  Size Selective Synthesis of Superparamagnetic Nanoparticles in Thin Fluids under Continuous Flow Conditions , 2008 .

[103]  Liang Li,et al.  Economic Synthesis of High Quality InP Nanocrystals Using Calcium Phosphide as the Phosphorus Precursor , 2008 .

[104]  S. Tu,et al.  Synthesis of Efficiently Green Luminescent CdSe/ZnS Nanocrystals Via Microfluidic Reaction , 2008, Nanoscale Research Letters.

[105]  Weiling Luan,et al.  Synthesis of nanocrystals via microreaction with temperature gradient: towards separation of nucleation and growth. , 2008, Lab on a chip.

[106]  Joseph E. Reiner,et al.  Preparation of nanoparticles by continuous-flow microfluidics , 2008 .

[107]  C. Y. Tai,et al.  A green process for preparing silver nanoparticles using spinning disk reactor , 2008 .

[108]  K. Iyer,et al.  Continuous flow nano-technology: manipulating the size, shape, agglomeration, defects and phases of silver nano-particles. , 2007, Lab on a chip.

[109]  M. Saunders,et al.  Controlled scalable synthesis of ZnO nanoparticles , 2007 .

[110]  T. Hyeon,et al.  Kinetics of monodisperse iron oxide nanocrystal formation by "heating-up" process. , 2007, Journal of the American Chemical Society.

[111]  Woo Y. Lee,et al.  Continuous nanoparticle production by microfluidic-based emulsion, mixing and crystallization , 2007 .

[112]  Ming-Hui Chang,et al.  Synthesis of Magnesium Hydroxide and Oxide Nanoparticles Using a Spinning Disk Reactor , 2007 .

[113]  T. Michalske,et al.  Spatially-resolved analysis of nanoparticle nucleation and growth in a microfluidic reactor. , 2007, Lab on a chip.

[114]  Taeghwan Hyeon,et al.  Synthesis of monodisperse spherical nanocrystals. , 2007, Angewandte Chemie.

[115]  Haitao Yang,et al.  Facile large-scale synthesis of monodisperse Fe nanoparticles by modest-temperature decomposition of iron carbonyl , 2007 .

[116]  Andrew J. deMello,et al.  Synthesis of thiol functionalized gold nanoparticles using a continuous flow microfluidic reactor , 2007 .

[117]  A. deMello,et al.  Accelerated synthesis of titanium oxide nanostructures using microfluidic chips. , 2007, Lab on a chip.

[118]  Xiaobo Wang,et al.  Novel single-source precursors approach to prepare highly uniform Bi2S3 and Sb2S3 nanorods via a solvothermal treatment , 2007 .

[119]  M. S. El-shall,et al.  Microwave Synthesis and Optical Properties of Uniform Nanorods and Nanoplates of Rare Earth Oxides , 2007 .

[120]  Yuliang Zhang,et al.  Facile and Reproducible Synthesis of Red-Emitting CdSe Nanocrystals in Amine with Long-Term Fixation of Particle Size and Size Distribution , 2007 .

[121]  J. Lee,et al.  Sub‐kilogram‐Scale One‐Pot Synthesis of Highly Luminescent and Monodisperse Core/Shell Quantum Dots by the Successive Injection of Precursors , 2006 .

[122]  C. Sönnichsen,et al.  Microfluidic continuous flow synthesis of rod-shaped gold and silver nanocrystals. , 2006, Physical chemistry chemical physics : PCCP.

[123]  G. Whitesides The origins and the future of microfluidics , 2006, Nature.

[124]  C. Kumar,et al.  Microfluidic Synthesis of Cobalt Nanoparticles , 2006 .

[125]  Nanping Xu,et al.  Continuous synthesis of zeolite NaA in a microchannel reactor , 2006 .

[126]  M. S. El-shall,et al.  Microwave synthesis of highly aligned ultra narrow semiconductor rods and wires. , 2006, Journal of the American Chemical Society.

[127]  A. Lee,et al.  Alternating droplet generation and controlled dynamic droplet fusion in microfluidic device for CdS nanoparticle synthesis. , 2006, Lab on a chip.

[128]  T. Hyeon,et al.  Large-scale nonhydrolytic sol-gel synthesis of uniform-sized ceria nanocrystals with spherical, wire, and tadpole shapes. , 2005, Angewandte Chemie.

[129]  Yongan Yang,et al.  Synthesis of CdSe and CdTe nanocrystals without precursor injection. , 2005, Angewandte Chemie.

[130]  J. Gerbec,et al.  Microwave-enhanced reaction rates for nanoparticle synthesis. , 2005, Journal of the American Chemical Society.

[131]  K. Suslick,et al.  Chemical aerosol flow synthesis of semiconductor nanoparticles. , 2005, Journal of the American Chemical Society.

[132]  N. Jana,et al.  Gram-scale synthesis of soluble, near-monodisperse gold nanorods and other anisotropic nanoparticles. , 2005, Small.

[133]  A Paul Alivisatos,et al.  High-temperature microfluidic synthesis of CdSe nanocrystals in nanoliter droplets. , 2005, Journal of the American Chemical Society.

[134]  Igor L. Medintz,et al.  Quantum dot bioconjugates for imaging, labelling and sensing , 2005, Nature materials.

[135]  C. Patra,et al.  Microwave approach for the synthesis of rhabdophane-type lanthanide orthophosphate (Ln = La, Ce, Nd, Sm, Eu, Gd and Tb) nanorods under solvothermal conditions , 2005 .

[136]  Josef Hormes,et al.  Investigations into sulfobetaine-stabilized Cu nanoparticle formation: toward development of a microfluidic synthesis. , 2005, The journal of physical chemistry. B.

[137]  Gangshan Wu,et al.  Large-scale synthesis and self-assembly of monodisperse hexagon Cu2S nanoplates. , 2005, Langmuir : the ACS journal of surfaces and colloids.

[138]  M. Uehara,et al.  Highly Luminescent CdSe/ZnS Nanocrystals Synthesized Using a Single‐Molecular ZnS Source in a Microfluidic Reactor , 2005 .

[139]  S. Gambhir,et al.  Quantum Dots for Live Cells, in Vivo Imaging, and Diagnostics , 2005, Science.

[140]  Hiroyuki Nakamura,et al.  Continuous synthesis of CdSe-ZnS composite nanoparticles in a microfluidic reactor. , 2004, Chemical communications.

[141]  Taeghwan Hyeon,et al.  Ultra-large-scale syntheses of monodisperse nanocrystals , 2004, Nature materials.

[142]  Hong Yang,et al.  Synthesis of Silver Nanoparticles in a Continuous Flow Tubular Microreactor , 2004 .

[143]  Saif A. Khan,et al.  Microfluidic synthesis of colloidal silica. , 2004, Langmuir : the ACS journal of surfaces and colloids.

[144]  Andrew J. deMello,et al.  On-line analysis of CdSe nanoparticle formation in a continuous flow chip-based microreactor , 2004 .

[145]  K. Mae,et al.  Production of titania nanoparticles by using a new microreactor assembled with same axle dual pipe , 2004 .

[146]  Rustem F Ismagilov,et al.  Multi-step synthesis of nanoparticles performed on millisecond time scale in a microfluidic droplet-based system. , 2004, Lab on a chip.

[147]  Young Woon Kim,et al.  Generalized and facile synthesis of semiconducting metal sulfide nanocrystals. , 2003, Journal of the American Chemical Society.

[148]  Young Woon Kim,et al.  Multigram scale synthesis and characterization of monodisperse tetragonal zirconia nanocrystals. , 2003, Journal of the American Chemical Society.

[149]  Hiroyuki Nakamura,et al.  Preparation of titania particles utilizing the insoluble phase interface in a microchannel reactor. , 2002, Chemical communications.

[150]  Nikolai Gaponik,et al.  THIOL-CAPPING OF CDTE NANOCRYSTALS: AN ALTERNATIVE TO ORGANOMETALLIC SYNTHETIC ROUTES , 2002 .

[151]  Darwin R. Reyes,et al.  Micro total analysis systems. 1. Introduction, theory, and technology. , 2002, Analytical chemistry.

[152]  Andrew J deMello,et al.  Microfluidic routes to the controlled production of nanoparticles. , 2002, Chemical communications.

[153]  Hiroyuki Nakamura,et al.  Preparation of CdSe nanocrystals in a micro-flow-reactor. , 2002, Chemical communications.

[154]  Xiaogang Peng,et al.  Formation of high-quality CdTe, CdSe, and CdS nanocrystals using CdO as precursor. , 2001, Journal of the American Chemical Society.

[155]  James H. Adair,et al.  Recent developments in the preparation and properties of nanometer-size spherical and platelet-shaped particles and composite particles , 1998 .

[156]  M. Bawendi,et al.  Synthesis and characterization of nearly monodisperse CdE (E = sulfur, selenium, tellurium) semiconductor nanocrystallites , 1993 .

[157]  C. Fischer,et al.  Colloidal cadmium sulfide preparation via flow techniques: ultrasmall particles and the effect of a chromatographic column , 1992 .

[158]  V. Lamer,et al.  Theory, Production and Mechanism of Formation of Monodispersed Hydrosols , 1950 .