Seismic imaging of reservoir flow properties: Time-lapse amplitude changes

Asymptotic methods provide an efficient means by which to infer reservoir flow properties, such as permeability, from time-lapse seismic data. A trajectory-based methodology, much like ray-based methods for medical and seismic imaging, is the basis for an iterative inversion of time-lapse amplitude changes. In this approach a single reservoir simulation is required for each iteration of the algorithm. A comparison between purely numerical and the trajectory-based sensitivities demonstrates their accuracy. An application to a set of synthetic amplitude changes indicates that they can recover large-scale reservoir permeability variations from time-lapse data. In an application of actual time-lapse amplitude changes from the Bay Marchand field in the Gulf of Mexico we are able to reduce the misfit by 81% in twelve iterations. The time-lapse observations indicate lower permeabilities are required in the central portion of the reservoir.

[1]  Amos Nur Four‐dimesional seismology and (true) direct detection of hydrocarbons: The petrophysical basis , 1989 .

[2]  Akhil Datta-Gupta,et al.  Integrating dynamic data into high-resolution reservoir models using streamline-based analytic sensitivity coefficients , 1998 .

[3]  Terrance J. Fulp,et al.  AAPG Memoir 42 and SEG Investigations in Geophysics, No. 9, Chapter 9 (Case Histories of Three-Dimensional Seismic Surveys) -- Case History 4: Three-Dimensional Seismic Monitoring of An Enhanced Oil Recovery Process , 1987 .

[4]  K. Karasaki,et al.  Estimation of reservoir properties using transient pressure data: An asymptotic approach , 2000 .

[5]  M. Kline,et al.  Electromagnetic theory and geometrical optics , 1965 .

[6]  Martin Landrø,et al.  Estimating Pressure And Saturation Changes Time-lapse AVO Data , 1999 .

[7]  Z. Kabala,et al.  Sensitivity analysis of flow in unsaturated heterogeneous porous media: Theory, numerical model, and its verification , 1990 .

[8]  A. B. Wood,et al.  A textbook of sound , 1930 .

[9]  D. Vasco An algebraic formulation of geophysical inverse problems , 2000 .

[10]  Martin Landrø,et al.  Discrimination between pressure and fluid saturation changes from time-lapse seismic data , 2001 .

[11]  S. E. Buckley,et al.  Mechanism of Fluid Displacement in Sands , 1942 .

[12]  R. Gritto,et al.  Nonlinear Three-dimensional Inversion of Low-frequency Scattered Elastic Waves , 1999 .

[13]  F. Bratvedt,et al.  Streamline computations for porous media flow including gravity , 1996 .

[14]  Pavel Bedrikovetsky,et al.  Mathematical Theory of Oil and Gas Recovery , 1993 .

[15]  John R. Fanchi,et al.  Time-lapse seismic monitoring in reservoir management , 2001 .

[16]  G. Whitham,et al.  Linear and Nonlinear Waves , 1976 .

[17]  Xuri Huang,et al.  Improving production history matching using time‐lapse seismic data , 1998 .

[18]  R. Parker Geophysical Inverse Theory , 1994 .

[19]  Jack K. Cohen,et al.  Three‐dimensional Born inversion with an arbitrary reference , 1986 .

[20]  M. Landrø,et al.  Discrimination between pressure and fluid saturation changes from marine multicomponent time-lapse seismic data , 2003 .

[21]  Mark E. Everett,et al.  Homotopy, Polynomial Equations, Gross Boundary Data, and Small Helmholtz Systems , 1996 .

[22]  Brackin A. Smith,et al.  4-D constrained depth conversion for reservoir compaction estimation Application to Ekofisk Field , 2002 .

[23]  David Lumley,et al.  Cross‐equalization data processing for time‐lapse seismic reservoir monitoring: A case study from the Gulf of Mexico , 2001 .

[24]  A. Nur,et al.  Elasticity of High-porosity Sandstones: Theory For Two North Sea Datasets , 1995 .

[25]  Thomas L. Davis,et al.  Time-Lapse Seismic Monitoring and Dynamic Reservoir Characterization, Central Vacuum Unit, Lea County, New Mexico , 2000 .

[26]  Alan Jeffrey,et al.  Quasilinear hyperbolic systems and waves , 1976 .

[27]  Amos Nur,et al.  Elasticity of high‐porosity sandstones: Theory for two North Sea data sets , 1996 .

[28]  I. Brevik Rock Model Based Inversion of Saturation And Pressure Changes From Time Lapse Seismic Data , 1999 .

[29]  Ulrich Hornung,et al.  Miscible displacement , 1996 .

[30]  Ali Tura,et al.  Estimating Pressure and Saturation Changes from Time Lapse AVO Data , 1999 .

[31]  R. A. Behrens,et al.  Seismic imaging of reservoir flow properties: Time-lapse amplitude changesSeismic Imaging of Flow Properties , 2004 .

[32]  A. Datta-Gupta,et al.  Asymptotics, Saturation Fronts, and High Resolution Reservoir Characterization , 2001 .

[33]  David Lumley,et al.  Assessing the technical risk of a 4-D seismic project , 1997 .

[34]  Akhil Datta-Gupta,et al.  Asymptotic solutions for solute transport: A formalism for tracer tomography , 1999 .

[35]  F. Gassmann,et al.  Elastic waves through a packing of spheres , 1951 .

[36]  R. Courant,et al.  Methods of Mathematical Physics , 1962 .

[37]  Carl de Boor,et al.  A Practical Guide to Splines , 1978, Applied Mathematical Sciences.

[38]  Phoolan Prasad,et al.  Nonlinear Hyperbolic Waves in Multidimensions , 2001 .

[39]  Ronald R. Coifman,et al.  Local discontinuity measures for 3-D seismic data , 2002 .

[40]  J. Marsden,et al.  A mathematical introduction to fluid mechanics , 1979 .

[41]  B. Kennett,et al.  Seismic Wave Propagation in Stratified Media , 1983 .

[42]  S. Jonathan Chapman,et al.  Ray Theory for High-Péclet-Number Convection-Diffusion , 1999, SIAM Journal on Applied Mathematics.

[43]  Michael A. Saunders,et al.  Algorithm 583: LSQR: Sparse Linear Equations and Least Squares Problems , 1982, TOMS.

[44]  I. Magnus,et al.  4-D seismic in a complex fluvial reservoir The Snorre feasibility study , 2001 .

[45]  D. H. Johnston,et al.  Time‐lapse seismic analysis of Fulmar Field , 1998 .

[46]  Akhil Datta-Gupta,et al.  A semianalytic approach to tracer flow modeling in heterogeneous permeable media , 1995 .

[47]  Ian Jack,et al.  Time-lapse seismic in reservoir management , 1997 .

[48]  Malgorzata Peszynska,et al.  Coupled geomechanics and flow simulation for time-lapse seismic modeling , 2004 .

[49]  C. Nelson Dorny,et al.  A Vector Space Approach to Models and Optimization , 1983 .

[50]  Andrew Dilay,et al.  Seismic monitoring of steam‐based recovery of bitumen , 1994 .

[51]  B. Finlayson The method of weighted residuals and variational principles : with application in fluid mechanics, heat and mass transfer , 1972 .

[52]  Ali Tura,et al.  Pressure And Saturation Inversion of 4D Seismic Data By Rock Physics Forward Modeling , 2002 .

[53]  Mark K. Segar A SLAP for the masses , 1989 .

[54]  J. Pasciak,et al.  Computer solution of large sparse positive definite systems , 1982 .

[55]  David Lumley,et al.  Estimation of Reservoir Pressure And Saturations By Crossplot Inversion of 4D Seismic Attributes , 2003 .

[56]  P. Johnston,et al.  Time-lapse crosswell seismic tomography to characterize flow structure in the reservoir during the thermal stimulation , 1995 .

[57]  G. Michael Hoversten,et al.  Pressure and fluid saturation prediction in a multicomponent reservoir, using combined seismic and electromagnetic imaging , 2002 .

[58]  Jan Helgesen,et al.  Snorre time-lapse feasibility study: increased repeatability through close co-operation between processing reservoir geophysicists , 2002 .

[59]  Peter B. Flemings,et al.  Time-lapse (4-D) seismic monitoring of primary production of turbidite reservoirs at South Timbalier Block 295, offshore Louisiana, Gulf of Mexico , 2000 .

[60]  Bruce P. Marion,et al.  Crosswell seismic imaging of reservoir changes caused by CO 2 injection , 1997 .

[61]  Pietro Pantano,et al.  Ray Methods for Nonlinear Waves in Fluids and Plasmas , 1993 .

[62]  D. W. Peaceman Fundamentals of numerical reservoir simulation , 1977 .

[63]  Kurt J. Marfurt,et al.  Eigenstructure-based coherence computations as an aid to 3-D structural and stratigraphic mapping , 1999 .

[64]  C. Voss,et al.  Behavior of sensitivities in the one-dimensional advection-dispersion equation: Implications for parameter estimation and sampling design , 1987 .

[65]  D. E. Gawith,et al.  Reservoir monitoring of the Magnus Field through 4D time-lapse seismic analysis , 1996, Petroleum Geoscience.

[66]  W. Beydoun,et al.  Elastic Ray‐Born L2‐Migration/Inversion , 1989 .

[67]  Olivier Gosselin,et al.  Integrated History-Matching of Production and 4D Seismic Data , 2001 .

[68]  S. N. Domenico,et al.  Effect of water saturation on seismic reflectivity of sand reservoirs encased in shale , 1974 .

[69]  Don W. Vasco,et al.  A coupled inversion of pressure and surface displacement , 2001 .

[70]  Ali Tura,et al.  Subsurface fluid flow properties from time-lapse elastic wave reflection data , 1998, Optics & Photonics.

[71]  Michael S. Bahorich,et al.  3-D seismic discontinuity for faults and stratigraphic features; the coherence cube , 1995 .

[72]  Don W. Vasco,et al.  Inversion of pressure observations: an integral formulation , 2001 .

[73]  M. R. Todd,et al.  Development, testing and application of a numerical simulator for predicting miscible flood performance , 1972 .

[74]  J. H. Justice,et al.  Time-lapse crosswell seismic tomogram interpretation: Implications for heavy oil reservoir characterization, thermal recovery process monitoring, and tomographic imaging technology , 1995 .

[75]  Ruben D. Martinez,et al.  Formation Pressure Prediction With Seismic Data From the Gulf of Mexico , 1991 .

[76]  G. E. Archie The electrical resistivity log as an aid in determining some reservoir characteristics , 1942 .

[77]  Roland N. Horne,et al.  A Procedure to Integrate Well Test Data, Reservoir Performance History and 4-D Seismic Information into a Reservoir Description , 1997 .

[78]  Don W. Vasco,et al.  Resolution, uncertainty, and whole Earth tomography , 2002 .