On Metric Diophantine Approximation in the Field of Formal Laurent Series

B. deMathan (1970, Bull. Soc. Math. France Supl. Mem.21) proved that Khintchine?s Theorem has an analogue in the field of formal Laurent series. First, we show that in case of only one inequality this result can also be obtained by continued fraction theory. Then, we are interested in the number of solutions and show under special assumptions that one gets a central limit theorem, a law of iterated logarithm and an asymptotic formula. This is an analogue of a result due to W. J. LeVeque (1958, Trans. Amer. Math. Soc.87, 237?260). The proof is based on probabilistic results for formal Laurent series due to H. Niederreiter (1988, in Lecture Notes in Computer Science, Vol. 330, pp. 191?209, Springer-Verlag, New York/Berlin).

[1]  Harald Niederreiter,et al.  Linear Complexity Profiles: Hausdorff Dimensions for Almost Perfect Profiles and Measures for General Profiles , 1997, J. Complex..

[2]  F. Wiedijk,et al.  Some metrical observations on the approximation by continued fractions , 1983 .

[3]  V. Jarník,et al.  Zur metrischen Theorie der diophantischen Approximationen , 1929 .

[4]  B. Mathan Approximation exponents for algebraic functions in positive characteristic , 1992 .

[5]  H. Bauer Wahrscheinlichkeitstheorie und Grundzuge der Maßtheorie , 1968 .

[6]  Walter Philipp Mixing Sequences of Random Variables and Probabilistic Number Theory , 1971 .

[7]  B. D. Mathan Approximations diophantiennes dans un corps local , 1970 .

[8]  W. Schmidt On continued fractions and diophantine approximation in power series fields , 2000 .

[9]  Niklaus Wirth,et al.  Advances in Cryptology — EUROCRYPT ’88 , 2000, Lecture Notes in Computer Science.

[10]  A. Lasjaunias A Survey of Diophantine Approximationin Fields of Power Series , 2000 .

[11]  A. Shiryayev On Sums of Independent Random Variables , 1992 .

[12]  William J. LeVeque On the frequency of small fractional parts in certain real sequences. II , 1958 .

[13]  A. Hurwitz Ueber die angenäherte Darstellung der Irrationalzahlen durch rationale Brüche , 1891 .

[14]  Harald Niederreiter,et al.  The Probabilistic Theory of Linear Complexity , 1988, EUROCRYPT.

[15]  A. Khintchine,et al.  Zur metrischen Theorie der diophantischen Approximationen , 1926 .