Effective property models for homogeneous two-phase flows

Using an analogy between thermal conductivity of porous media and viscosity in two-phase flow, new definitions for two-phase viscosity are proposed. These new definitions satisfy the following two conditions: namely (i) the two-phase viscosity is equal to the liquid viscosity at the mass quality = 0% and (ii) the two-phase viscosity is equal to the gas viscosity at the mass quality = 100%. These new definitions can be used to compute the two-phase frictional pressure gradient using the homogeneous modeling approach. These new models are assessed using published experimental data of two-phase frictional pressure gradient in circular pipes, minichannels and microchannels in the form of Fanning friction factor (f{sub m}) versus Reynolds number (Re{sub m}). The published data include different working fluids such as R-12, R-22, argon (R740), R717, R134a, R410A and propane (R290) at different diameters and different saturation temperatures. Models are assessed on the basis minimizing the root mean square error (e{sub RMS}). It is shown that these new definitions of two-phase viscosity can be used to analyze the experimental data of two-phase frictional pressure gradient in circular pipes, minichannels and microchannels using simple friction models. (author)

[1]  J. Thome,et al.  Convective Boiling and Condensation , 1972 .

[2]  A. Cavallini,et al.  Two-phase frictional pressure gradient of R236ea, R134a and R410A inside multi-port mini-channels , 2005 .

[3]  M. W. Wambsganss,et al.  Two-phase pressure drop of refrigerants during flow boiling in small channels : an experimental investigation and correlation development. , 1999 .

[4]  S. Shtrikman,et al.  A Variational Approach to the Theory of the Effective Magnetic Permeability of Multiphase Materials , 1962 .

[5]  Daniel D. Joseph,et al.  Power law and composite power law friction factor correlations for laminar and turbulent gas–liquid flow in horizontal pipelines , 2003 .

[6]  Kenichi Hashizume,et al.  Flow pattern, void fraction and pressure drop of refrigerant two-phase flow in a horizontal pipe—I. Experimental data , 1983 .

[7]  P. Whalley,et al.  A Simple Two-Phase Frictional Pressure Drop Calculation Method , 1982 .

[8]  H. Müller-Steinhagen Wärmeübergang und Fouling beim Strömungssieden von Argon und Stickstoff im horizontalen Rohr , 1984 .

[9]  James K. Carson,et al.  Thermal conductivity bounds for isotropic, porous materials , 2005 .

[10]  S. Bories,et al.  Experimental study of air-water two-phase flow through a fracture (narrow channel) , 1995 .

[11]  H. Blasius,et al.  Das Aehnlichkeitsgesetz bei Reibungsvorgängen in Flüssigkeiten , 1913 .

[12]  S. Lin,et al.  Local frictional pressure drop during vaporization of R-12 through capillary tubes , 1991 .

[13]  E. Schlünder,et al.  Druckverlust und Wärmeübergang bei der Verdampfung siedender Kältemittel im durchströmten Rohr , 1973 .

[14]  S. Kirkpatrick Percolation and Conduction , 1973 .

[15]  Rolf Landauer,et al.  The Electrical Resistance of Binary Metallic Mixtures , 1952 .

[16]  F. White Viscous Fluid Flow , 1974 .

[17]  Eugene Ungar,et al.  Two-phase pressure drop of ammonia in small diameter horizontal tubes , 1992 .

[18]  A. Dukler,et al.  Frictional pressure drop in two‐phase flow: A. A comparison of existing correlations for pressure loss and holdup , 1964 .