Seeding with Costly Network Information

Seeding the most influential individuals based on the contact structure can substantially enhance the extent of a spread over the social network. Most of the influence maximization literature assumes the knowledge of the entire network graph. However, in practice, obtaining full knowledge of the network structure is very costly. We propose polynomial-time algorithms that provide almost tight approximation guarantees using a bounded number of queries to the graph structure. We also provide impossibility results to lower bound the query complexity and show tightness of our guarantees.

[1]  Jon A. Wellner,et al.  Weak Convergence and Empirical Processes: With Applications to Statistics , 1996 .

[2]  Nicole Immorlica,et al.  Influence Maximization with an Unknown Network by Exploiting Community Structure , 2017, SocInf@IJCAI.

[3]  Michael Mitzenmacher,et al.  Metric Sublinear Algorithms via Linear Sampling , 2018, 2018 IEEE 59th Annual Symposium on Foundations of Computer Science (FOCS).

[4]  Wei Chen,et al.  Robust Influence Maximization , 2016, KDD.

[5]  Andreas Krause,et al.  Adaptive Submodularity: Theory and Applications in Active Learning and Stochastic Optimization , 2010, J. Artif. Intell. Res..

[6]  Jie Tang,et al.  Influence Maximization in Dynamic Social Networks , 2013, 2013 IEEE 13th International Conference on Data Mining.

[7]  Piotr Indyk,et al.  Sublinear time algorithms for metric space problems , 1999, STOC '99.

[8]  Elchanan Mossel,et al.  Submodularity of Influence in Social Networks: From Local to Global , 2010, SIAM J. Comput..

[9]  N. Christakis,et al.  Social Network Sensors for Early Detection of Contagious Outbreaks , 2010, PloS one.

[10]  Amin Saberi,et al.  Just a Few Seeds More: Value of Network Information for Diffusion , 2018 .

[11]  Lior Seeman,et al.  Adaptive Seeding in Social Networks , 2013, 2013 IEEE 54th Annual Symposium on Foundations of Computer Science.

[12]  Edith Cohen,et al.  Sample Complexity Bounds for Influence Maximization , 2020, ITCS.

[13]  Dean Eckles,et al.  Evaluating stochastic seeding strategies in networks , 2018, Manag. Sci..

[14]  Hiroyuki Ohsaki,et al.  Influence maximization problem for unknown social networks , 2015, 2015 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM).

[15]  Éva Tardos,et al.  Maximizing the Spread of Influence through a Social Network , 2015, Theory Comput..

[16]  Andreas Krause,et al.  Lazier Than Lazy Greedy , 2014, AAAI.

[17]  Christos Faloutsos,et al.  Sampling from large graphs , 2006, KDD '06.

[18]  Eric Balkanski,et al.  The Power of Optimization from Samples , 2016, NIPS.

[19]  Nicole Immorlica,et al.  Uncharted but not Uninfluenced: Influence Maximization with an Uncertain Network , 2017, AAMAS.

[20]  Vahab S. Mirrokni,et al.  Almost Optimal Streaming Algorithms for Coverage Problems , 2016, SPAA.

[21]  Noga Alon,et al.  Efficient Testing of Large Graphs , 2000, Comb..

[22]  Bernard Chazelle,et al.  Approximating the Minimum Spanning Tree Weight in Sublinear Time , 2001, ICALP.

[23]  Vahab S. Mirrokni,et al.  Optimal Distributed Submodular Optimization via Sketching , 2018, KDD.

[24]  Jing Cai,et al.  Social Networks and the Decision to Insure , 2012 .

[25]  Wei Chen,et al.  Scalable influence maximization for independent cascade model in large-scale social networks , 2012, Data Mining and Knowledge Discovery.

[26]  Reynold Cheng,et al.  Online Influence Maximization , 2015, KDD.

[27]  Christian Borgs,et al.  Maximizing Social Influence in Nearly Optimal Time , 2012, SODA.

[28]  Nicole Immorlica,et al.  Maximizing Influence in an Unknown Social Network , 2018, AAAI.

[29]  Yaron Singer,et al.  Scalable Methods for Adaptively Seeding a Social Network , 2015, WWW.

[30]  Jan U. Becker,et al.  Seeding Strategies for Viral Marketing: An Empirical Comparison , 2011 .

[31]  Arun G. Chandrasekhar,et al.  The Diffusion of Microfinance , 2012, Science.

[32]  E. Muller,et al.  Decomposing the Value of Word-of-Mouth Seeding Programs: Acceleration vs. Expansion , 2012 .

[33]  Mason A. Porter,et al.  Social Structure of Facebook Networks , 2011, ArXiv.

[34]  Sergei Vassilvitskii,et al.  Fast greedy algorithms in mapreduce and streaming , 2013, SPAA.

[35]  David Kempe,et al.  Stability and Robustness in Influence Maximization , 2018, ACM Trans. Knowl. Discov. Data.

[36]  Edith Cohen,et al.  Sketch-based Influence Maximization and Computation: Scaling up with Guarantees , 2014, CIKM.

[37]  Kyomin Jung,et al.  IRIE: Scalable and Robust Influence Maximization in Social Networks , 2011, 2012 IEEE 12th International Conference on Data Mining.

[38]  David Krackhardt,et al.  Based on Inversity : Leveraging the Friendship Paradox in Unknown Network Structures , 2018 .

[39]  Setareh Maghsudi,et al.  Heuristic Algorithms for Influence Maximization in Partially Observable Social Networks , 2017, SocInf@IJCAI.

[40]  Sebastian E. Ahnert,et al.  Social network fragmentation and community health , 2017, Proceedings of the National Academy of Sciences.

[41]  Biaoshuai Tao,et al.  Beyond Worst-case (In)approximability of Nonsubmodular Influence Maximization , 2019, ACM Trans. Comput. Theory.

[42]  J Jaap Molenaar,et al.  Stability and Robustness , 2007 .

[43]  Arun G. Chandrasekhar,et al.  Using Gossips to Spread Information: Theory and Evidence from Two Randomized Controlled Trials , 2017, The Review of Economic Studies.

[44]  Matthew Richardson,et al.  Mining the network value of customers , 2001, KDD '01.

[45]  Zheng Wen,et al.  Online Influence Maximization under Independent Cascade Model with Semi-Bandit Feedback , 2016, NIPS.

[46]  Vahideh H. Manshadi,et al.  Diffusion in Random Networks: Impact of Degree Distribution , 2018, NetEcon@SIGMETRICS.

[47]  Wei Chen,et al.  Efficient influence maximization in social networks , 2009, KDD.

[48]  Jan Vondrák,et al.  Fast algorithms for maximizing submodular functions , 2014, SODA.

[49]  A. James 2010 , 2011, Philo of Alexandria: an Annotated Bibliography 2007-2016.

[50]  Reuven Cohen,et al.  Efficient immunization strategies for computer networks and populations. , 2002, Physical review letters.

[51]  E. Paluck,et al.  Changing climates of conflict: A social network experiment in 56 schools , 2016, Proceedings of the National Academy of Sciences.

[52]  Peter Orbanz,et al.  Subsampling large graphs and invariance in networks , 2017, 1710.04217.

[53]  David Godes,et al.  Firm-Created Word-of-Mouth Communication: Evidence from a Field Test , 2009, Mark. Sci..

[54]  Éva Tardos,et al.  Influential Nodes in a Diffusion Model for Social Networks , 2005, ICALP.

[55]  Eric Balkanski,et al.  The limitations of optimization from samples , 2015, STOC.

[56]  Laks V. S. Lakshmanan,et al.  Learning influence probabilities in social networks , 2010, WSDM '10.

[57]  Hiroyuki Ohsaki,et al.  On the effectiveness of random jumps in an influence maximization algorithm for unknown graphs , 2017, 2017 International Conference on Information Networking (ICOIN).

[58]  Nicole Immorlica,et al.  The Importance of Communities for Learning to Influence , 2017, NIPS.

[59]  Noga Alon,et al.  A combinatorial characterization of the testable graph properties: it's all about regularity , 2006, STOC '06.

[60]  Andreas Krause,et al.  Stochastic Submodular Maximization: The Case of Coverage Functions , 2017, NIPS.

[61]  Silvio Lattanzi,et al.  The Power of Random Neighbors in Social Networks , 2015, WSDM.

[62]  N. Christakis,et al.  Social network targeting to maximise population behaviour change: a cluster randomised controlled trial , 2015, The Lancet.