Detection of a Drag Force in G2's Orbit: Measuring the Density of the Accretion Flow onto Sgr A* at 1000 Schwarzschild Radii

The Galactic Center black hole Sgr A* is the archetypical example of an underfed massive black hole. The extremely low accretion rate can be understood in radiatively inefficient accretion flow models. Testing those models has proven to be difficult due to the lack of suitable probes. Radio and submillimeter polarization measurements constrain the flow very close to the event horizon. X-ray observations resolving the Bondi radius yield an estimate roughly four orders of magnitude further out. Here, we present a new, indirect measurement of the accretion flow density at intermediate radii. We use the dynamics of the gas cloud G2 to probe the ambient density. We detect the presence of a drag force slowing down G2 with a statistical significance of ≈9σ. This probes the accretion flow density at around 1000 Schwarzschild radii and yields a number density of ≈4 × 103 cm−3. Self-similar accretion models where the density follows a power-law radial profile between the inner zone and the Bondi radius have predicted similar values.

[1]  S. Rabien,et al.  Detection of the gravitational redshift in the orbit of the star S2 near the Galactic centre massive black hole , 2018, Astronomy & Astrophysics.

[2]  Feng Gao,et al.  A Detection of Sgr A* in the Far Infrared , 2018, The Astrophysical Journal.

[3]  E. Quataert,et al.  Hydrodynamic simulations of the inner accretion flow of Sagittarius A* fuelled by stellar winds , 2018, 1805.00474.

[4]  A. Ghez,et al.  The Post-periapsis Evolution of Galactic Center Source G1: The Second Case of a Resolved Tidal Interaction with a Supermassive Black Hole , 2017, 1707.02301.

[5]  R. Genzel,et al.  Probing the gas density in our Galactic Centre: moving mesh simulations of G2 , 2017, 1705.10337.

[6]  S. Rabien,et al.  First light for GRAVITY: Phase referencing optical interferometry for the Very Large Telescope Interferometer , 2017, 1705.02345.

[7]  R. Genzel,et al.  The Post-pericenter Evolution of the Galactic Center Source G2 , 2017, 1704.05351.

[8]  Reinhard Genzel,et al.  An Update on Monitoring Stellar Orbits in the Galactic Center , 2016, 1611.09144.

[9]  Ryan M. O'Leary,et al.  Using gas clouds to probe the accretion flow around Sgr A*: G2's delayed pericentre passage , 2016, 1602.02760.

[10]  H. Falcke,et al.  The 492 GHz emission of Sgr A* constrained by ALMA , 2016, 1604.00599.

[11]  R. Genzel,et al.  3D ADAPTIVE MESH REFINEMENT SIMULATIONS OF THE GAS CLOUD G2 BORN WITHIN THE DISKS OF YOUNG STARS IN THE GALACTIC CENTER , 2015, 1508.07060.

[12]  Mike McCourt,et al.  Going with the flow: using gas clouds to probe the accretion flow feeding Sgr A* , 2015, 1503.04801.

[13]  H. Falcke,et al.  RADIO AND MILLIMETER MONITORING OF Sgr ?> A⋆: SPECTRUM, VARIABILITY, AND CONSTRAINTS ON THE G2 ENCOUNTER , 2015, 1502.06534.

[14]  H. Falcke,et al.  UvA-DARE ( Digital Academic Repository ) ALMA and VLA measurements of frequency-dependent time lags in Sagittarius A * : evidence for a relativistic outflow , 2015 .

[15]  E. Quataert,et al.  Magnetized gas clouds can survive acceleration by a hot wind , 2014, 1409.6719.

[16]  P. Wizinowich,et al.  DETECTION OF GALACTIC CENTER SOURCE G2 AT 3.8 μm DURING PERIAPSE PASSAGE , 2014, 1410.1884.

[17]  Andreas Burkert,et al.  THE GALACTIC CENTER CLOUD G2 AND ITS GAS STREAMER , 2014 .

[18]  A Stellar Wind Origin for the G2 Cloud: Three-Dimensional Numerical Simulations , 2014, 1406.1188.

[19]  A. Eckart,et al.  Dust-enshrouded star near supermassive black hole: predictions for high-eccentricity passages near low-luminosity galactic nuclei , 2014, 1403.5792.

[20]  J. Guillochon,et al.  POSSIBLE ORIGIN OF THE G2 CLOUD FROM THE TIDAL DISRUPTION OF A KNOWN GIANT STAR BY SGR A* , 2014, 1401.2990.

[21]  R. Narayan,et al.  Hot Accretion Flows Around Black Holes , 2014, 1401.0586.

[22]  R. Shcherbakov THE PROPERTIES AND FATE OF THE GALACTIC CENTER G2 CLOUD , 2013, 1309.2282.

[23]  J. Cuadra,et al.  Dissecting X-ray–Emitting Gas Around the Center of Our Galaxy , 2013, Science.

[24]  Andreas Burkert,et al.  Pericenter passage of the gas cloud G2 in the galactic center , 2013 .

[25]  R. Genzel,et al.  HYDRODYNAMICAL SIMULATIONS OF A COMPACT SOURCE SCENARIO FOR THE GALACTIC CENTER CLOUD G2 , 2013, 1305.7238.

[26]  E. Becklin,et al.  KECK OBSERVATIONS OF THE GALACTIC CENTER SOURCE G2: GAS CLOUD OR STAR? , 2013, 1304.5280.

[27]  R. Narayan,et al.  Location of the bow shock ahead of cloud G2 at the Galactic Centre , 2013, 1303.3893.

[28]  R. Genzel,et al.  NEW OBSERVATIONS OF THE GAS CLOUD G2 IN THE GALACTIC CENTER , 2012, Proceedings of the International Astronomical Union.

[29]  P. Anninos,et al.  THREE-DIMENSIONAL MOVING-MESH SIMULATIONS OF GALACTIC CENTER CLOUD G2 , 2012, 1209.1638.

[30]  R. Genzel,et al.  SIMULATIONS OF THE ORIGIN AND FATE OF THE GALACTIC CENTER CLOUD G2 , 2012, 1302.0124.

[31]  E. Rossi,et al.  HYPER VELOCITY STARS AND THE RESTRICTED PARABOLIC 3-BODY PROBLEM , 2012 .

[32]  R. Genzel,et al.  PHYSICS OF THE GALACTIC CENTER CLOUD G2, ON ITS WAY TOWARD THE SUPERMASSIVE BLACK HOLE , 2012, 1201.1414.

[33]  A. Loeb,et al.  Disruption of a proto-planetary disc by the black hole at the milky way centre , 2011, Nature Communications.

[34]  C. Gammie,et al.  A gas cloud on its way towards the supermassive black hole at the Galactic Centre , 2011, Nature.

[35]  R. Penna,et al.  SAGITTARIUS A* ACCRETION FLOW AND BLACK HOLE PARAMETERS FROM GENERAL RELATIVISTIC DYNAMICAL AND POLARIZED RADIATIVE MODELING , 2010, 1007.4832.

[36]  Stephen R. Green,et al.  Numerical parameter survey of non‐radiative black hole accretion: flow structure and variability of the rotation measure , 2010, 1011.5498.

[37]  R. Genzel,et al.  The galactic center massive black hole and nuclear star cluster , 2010, 1006.0064.

[38]  P. Chris Fragile,et al.  THE SUBMILLIMETER BUMP IN Sgr A* FROM RELATIVISTIC MHD SIMULATIONS , 2010, 1005.4062.

[39]  F. Baganoff,et al.  INFLOW–OUTFLOW MODEL WITH CONDUCTION AND SELF-CONSISTENT FEEDING FOR Sgr A* , 2010, 1004.0702.

[40]  E. Rossi,et al.  HYPERVELOCITY STARS AND THE RESTRICTED PARABOLIC THREE-BODY PROBLEM , 2009, 0911.1136.

[41]  P. K. Leung,et al.  RADIATIVE MODELS OF SGR A* FROM GRMHD SIMULATIONS , 2009, 0909.5431.

[42]  A. Miyazaki,et al.  THE VARIABILITY OF SAGITTARIUS A* AT 3 MILLIMETER , 2008, 0905.2654.

[43]  R. Genzel,et al.  MONITORING STELLAR ORBITS AROUND THE MASSIVE BLACK HOLE IN THE GALACTIC CENTER , 2008, 0810.4674.

[44]  A. Niell,et al.  Event-horizon-scale structure in the supermassive black hole candidate at the Galactic Centre , 2008, Nature.

[45]  Jessica R. Lu,et al.  Measuring Distance and Properties of the Milky Way’s Central Supermassive Black Hole with Stellar Orbits , 2008, 0808.2870.

[46]  J. Moran,et al.  To appear in the Astrophysical Journal Letters Preprint typeset using L ATEX style emulateapj v. 10/09/06 AN UNAMBIGUOUS DETECTION OF FARADAY ROTATION IN SAGITTARIUS A* , 2006 .

[47]  J. M. Moran,et al.  Interferometric Measurements of Variable 340 GHz Linear Polarization in Sagittarius A* , 2005, astro-ph/0511653.

[48]  R. Narayan,et al.  Thermal X-Ray Iron Line Emission from the Galactic Center Black Hole Sagittarius A* , 2005, astro-ph/0511590.

[49]  D. Rouan,et al.  A dual emission mechanism in Sgr A*/L ' ? ⋆ , 2005, astro-ph/0507088.

[50]  J. Cuadra,et al.  Galactic Centre stellar winds and Sgr A* accretion , 2005 .

[51]  Jessica R. Lu,et al.  The First Laser Guide Star Adaptive Optics Observations of the Galactic Center: Sgr A*’s Infrared Color and the Extended Red Emission in its Vicinity , 2005, astro-ph/0508664.

[52]  D. Lin,et al.  Energy Dissipation in Multiphase Infalling Clouds in Galaxy Halos , 2004, astro-ph/0407411.

[53]  E. Quataert,et al.  A Dynamical Model for Hot Gas in the Galactic Center , 2003, astro-ph/0310446.

[54]  Ramesh Narayan,et al.  Nonthermal Electrons in Radiatively Inefficient Accretion Flow Models of Sagittarius A* , 2003, astro-ph/0304125.

[55]  Norbert N. Hubin,et al.  SINFONI - Integral field spectroscopy at 50 milli-arcsecond resolution with the ESO VLT , 2003, SPIE Astronomical Telescopes + Instrumentation.

[56]  G. Neugebauer,et al.  The First Measurement of Spectral Lines in a Short-Period Star Bound to the Galaxy’s Central Black Hole: A Paradox of Youth , 2003 .

[57]  Geoffrey C. Bower,et al.  Interferometric Detection of Linear Polarization from Sagittarius A* at 230 GHz , 2003, astro-ph/0302227.

[58]  Norbert N. Hubin,et al.  Implementation of MACAO for SINFONI at the VLT, in NGS and LGS modes , 2003, SPIE Astronomical Telescopes + Instrumentation.

[59]  K. Menten,et al.  A star in a 15.2-year orbit around the supermassive black hole at the centre of the Milky Way , 2002, Nature.

[60]  UCLA,et al.  Chandra X-Ray Spectroscopic Imaging of Sagittarius A* and the Central Parsec of the Galaxy , 2001, astro-ph/0102151.

[61]  E. Agol Sagittarius A* Polarization: No Advection-dominated Accretion Flow, Low Accretion Rate, and Nonthermal Synchrotron Emission , 2000 .

[62]  E. Agol Sgr A* Polarization: No ADAF, Low Accretion Rate, and Non-Thermal Synchrotron Emission , 2000, astro-ph/0005051.

[63]  E. Quataert,et al.  Constraining the Accretion Rate onto Sagittarius A* Using Linear Polarization , 2000, astro-ph/0004286.

[64]  E. Quataert,et al.  Convection-dominated Accretion Flows , 1999, astro-ph/9912440.

[65]  Roger D. Blandford,et al.  On the fate of gas accreting at a low rate on to a black hole , 1998, astro-ph/9809083.

[66]  H. Falcke,et al.  THE SIMULTANEOUS SPECTRUM OF SGR A* FROM λ 20CM TO λ 1MM AND THE NATURE OF THE MM-EXCESS , 1998 .

[67]  R. Narayan,et al.  Advection-dominated Accretion: Self-Similarity and Bipolar Outflows , 1994, astro-ph/9411058.

[68]  J. Hills,et al.  Hyper-velocity and tidal stars from binaries disrupted by a massive Galactic black hole , 1988, Nature.

[69]  M. Claussen,et al.  High-resolution observations of ionized gas in central 3 parsecs of the Galaxy: possible evidence for infall , 1983, Nature.

[70]  R. L. Brown,et al.  Intense sub-arcsecond structure in the galactic center , 1974 .

[71]  H. Bondi,et al.  On spherically symmetrical accretion , 1952 .