Formation of Massive Black Holes in Dense Star Clusters. I. Mass Segregation and Core Collapse

We study the early dynamical evolution of young dense star clusters by using Monte Carlo simulations for systems with up to N = 107 stars. Rapid mass segregation of massive main-sequence stars and the development of the Spitzer instability can drive these systems to core collapse in a small fraction of the initial half-mass relaxation time. If the core-collapse time is less than the lifetime of the massive stars, all stars in the collapsing core may then undergo a runaway collision process leading to the formation of a massive black hole. Here we study in detail the first step in this process, up to the occurrence of core collapse. We have performed about 100 simulations for clusters with a wide variety of initial conditions, varying systematically the cluster density profile, stellar initial mass function (IMF), and number of stars. We also considered the effects of initial mass segregation and stellar evolution mass loss. Our results show that, for clusters with a moderate initial central concentration and any realistic IMF, the ratio of core-collapse time to initial half-mass relaxation time is typically ~0.1, in agreement with the value previously found by direct N-body simulations for much smaller systems. Models with even higher central concentration initially, or with initial mass segregation (from star formation) have even shorter core collapse times. Remarkably, we find that, for all realistic initial conditions, the mass of the collapsing core is always close to ~10-3 of the total cluster mass, very similar to the observed correlation between central black hole mass and total cluster mass in a variety of environments. We discuss the implications of our results for the formation of intermediate-mass black holes in globular clusters and super star clusters, ultraluminous X-ray sources, and seed black holes in proto-galactic nuclei.

[1]  L. Ho,et al.  An Intermediate-Mass Black Hole in the Globular Cluster G1: Improved Significance from New Keck and Hubble Space Telescope Observations , 2005, astro-ph/0508251.

[2]  Jessica R. Lu,et al.  Stellar Orbits around the Galactic Center Black Hole , 2003, astro-ph/0306130.

[3]  M. Miller,et al.  Growth of Intermediate-Mass Black Holes in Globular Clusters , 2004, astro-ph/0402532.

[4]  R. Della Ceca,et al.  Coevolution of Black Holes and Galaxies , 2004 .

[5]  Piet Hut,et al.  BOOK REVIEW: The Gravitational Million-Body Problem: A Multidisciplinary Approach to Star Cluster Dynamics , 2003 .

[6]  F. Ferraro,et al.  The Puzzling Dynamical Status of the Core of the Globular Cluster NGC 6752 , 2003, astro-ph/0306138.

[7]  Milos Milosavljevic,et al.  The Need for a Second Black Hole at the Galactic Center , 2003, astro-ph/0306074.

[8]  F. Rasio The Gravitational Million-Body Problem: A Multidisciplinary Approach to Star Cluster Dynamics , 2003 .

[9]  M. Giersz,et al.  A stochastic Monte Carlo approach to modelling real star cluster evolution - III. Direct integration of three- and four-body interactions , 2003, astro-ph/0301643.

[10]  F. A. Rasio,et al.  Monte Carlo Simulations of Globular Cluster Evolution. III. Primordial Binary Interactions , 2003, astro-ph/0301521.

[11]  P. Hut,et al.  A Dynamical Model for the Globular Cluster G1 , 2003, astro-ph/0301469.

[12]  Chris L. Fryer,et al.  How Massive Single Stars End Their Life , 2002, astro-ph/0212469.

[13]  U. Maryland,et al.  X-Ray Spectroscopic Evidence for Intermediate-Mass Black Holes: Cool Accretion Disks in Two Ultraluminous X-Ray Sources , 2002, astro-ph/0211178.

[14]  Chris L. Fryer,et al.  Massive Star Evolution Through the Ages , 2002, astro-ph/0211062.

[15]  Kiel,et al.  The efficiency of the spiral- in of a black hole to the Galactic centre , 2002, astro-ph/0212494.

[16]  C. Leitherer,et al.  The Low End of the Initial Mass Function in Young Clusters. II. Evidence for Primordial Mass Segregation in NGC 330 in the Small Magellanic Cloud , 2002 .

[17]  I. Bonnell,et al.  Accretion in stellar clusters and the collisional formation of massive stars , 2002 .

[18]  K. Menten,et al.  A star in a 15.2-year orbit around the supermassive black hole at the centre of the Milky Way , 2002, Nature.

[19]  J. Gerssen,et al.  Addendum: Hubble Space Telescope Evidence for an Intermediate-Mass Black Hole in the Globular Cluster M15. II. Kinematic Analysis and Dynamical Modeling [Astron. J. 124, 3270 (2002)] , 2002, astro-ph/0210158.

[20]  J. Makino,et al.  On the Central Structure of M15 , 2002, astro-ph/0210133.

[21]  Giuseppina Fabbiano,et al.  Chandra Observations of “The Antennae” Galaxies (NGC 4038/4039). IV. The X-Ray Source Luminosity Function and the Nature of Ultraluminous X-Ray Sources , 2002 .

[22]  J. Gerssen,et al.  Hubble Space Telescope Evidence for an Intermediate-Mass Black Hole in the Globular Cluster M15. II. Kinematic Analysis and Dynamical Modeling , 2002, astro-ph/0209315.

[23]  U. Bern,et al.  A new Monte Carlo code for star cluster simulations - II. Central black hole and stellar collisions , 2002, astro-ph/0204292.

[24]  L. Ferrarese Beyond the Bulge: A Fundamental Relation between Supermassive Black Holes and Dark Matter Halos , 2002, astro-ph/0203469.

[25]  S. Tremaine,et al.  The Slope of the Black Hole Mass versus Velocity Dispersion Correlation , 2002, astro-ph/0203468.

[26]  Simon F. Portegies Zwart,et al.  The Runaway Growth of Intermediate-Mass Black Holes in Dense Star Clusters , 2002, astro-ph/0201055.

[27]  P. Kroupa The Initial Mass Function of Stars: Evidence for Uniformity in Variable Systems , 2002, Science.

[28]  Tomasz Bulik,et al.  A Comprehensive Study of Binary Compact Objects as Gravitational Wave Sources: Evolutionary Channels, Rates, and Physical Properties , 2001, astro-ph/0111452.

[29]  S. F. Portegies Zwart,et al.  Mass Segregation in Globular Clusters , 2002 .

[30]  S. Woosley,et al.  The Nucleosynthetic Signature of Population III , 2001, astro-ph/0107037.

[31]  M. Miller,et al.  Production of intermediate-mass black holes in globular clusters , 2001, astro-ph/0106188.

[32]  Bruno Leibundgut,et al.  From twilight to highlight : the physics of supernovae : proceedings of the ESO/MPA/MPE workshop held at Garching, Germany, 29-31 July 2002 , 2002 .

[33]  A. Eckart,et al.  Stellar orbits near Sagittarius A , 2002, astro-ph/0201031.

[34]  Michael L. Norman,et al.  The Formation of the First Star in the Universe , 2001, Science.

[35]  D. Heggie The gravitational million-body problem , 2001, astro-ph/0111045.

[36]  Hyung-Mok Lee Growth of stellar mass black holes in galactic nuclei , 2001 .

[37]  Toshikazu Ebisuzaki,et al.  UvA-DARE ( Digital Academic Repository ) Missing Link Found ? The " Runaway " Path to Supermassive Black Holes , 2001 .

[38]  G. Meynet,et al.  Stellar evolution with rotation. VII. - Low metallicity models and the blue to red supergiant ratio in the SMC , 2001, astro-ph/0105051.

[39]  S. G. Djorgovski,et al.  Mayall II = G1 in M31: Giant Globular Cluster or Core of a Dwarf Elliptical Galaxy? , 2001, astro-ph/0105013.

[40]  Bradley M. Peterson,et al.  Supermassive Black Holes in Active Galactic Nuclei. I. The Consistency of Black Hole Masses in Quiescent and Active Galaxies , 2001, astro-ph/0104380.

[41]  A. King,et al.  Ultraluminous X-Ray Sources in External Galaxies , 2001, astro-ph/0104333.

[42]  A. Chieffi,et al.  The Implications of the New Z = 0 Stellar Models and Yields on the Early Metal Pollution of the Intergalactic Medium , 2001, astro-ph/0104276.

[43]  L. Malyshkin,et al.  The Timescale of Runaway Stochastic Coagulation , 2001 .

[44]  M. Freitag,et al.  A new Monte Carlo code for star cluster simulations - I. Relaxation , 2001, astro-ph/0102139.

[45]  C. Clarke,et al.  Competitive accretion in embedded stellar clusters , 2001, astro-ph/0102074.

[46]  H. Baumgardt Scaling of N-body calculations , 2000, astro-ph/0012330.

[47]  F. Nakamura,et al.  On the Initial Mass Function of Population III Stars , 2000, astro-ph/0010464.

[48]  M. Giersz Monte Carlo simulations of star clusters – II. Tidally limited, multimass systems with stellar evolution , 2000, astro-ph/0009341.

[49]  P. Kaaret,et al.  Chandra High-Resolution Camera observations of the luminous X-ray source in the starburst galaxy M82 , 2000, astro-ph/0009211.

[50]  Cody P. Nave,et al.  Monte Carlo Simulations of Globular Cluster Evolution. II. Mass Spectra, Stellar Evolution, and Lifetimes in the Galaxy , 1999, astro-ph/9912155.

[51]  Andreas Just,et al.  Dynamics of Star Clusters and the Milky Way , 2001 .

[52]  Hugo Martel,et al.  26th Texas Symposium on Relativistic Astrophysics , 2001 .

[53]  E.P.J. van den Heuvel,et al.  Black holes in binaries and galactic nuclei , 2001 .

[54]  E. Becklin,et al.  The accelerations of stars orbiting the Milky Way's central black hole , 2000, Nature.

[55]  D. Merritt,et al.  The M•-σ Relation for Supermassive Black Holes , 2000, astro-ph/0008310.

[56]  Ralf Bender,et al.  A Relationship between Nuclear Black Hole Mass and Galaxy Velocity Dispersion , 2000, astro-ph/0006289.

[57]  D. Merritt,et al.  A Fundamental Relation between Supermassive Black Holes and Their Host Galaxies , 2000, astro-ph/0006053.

[58]  C. Tout,et al.  Comprehensive analytic formulae for stellar evolution as a function of mass and metallicity , 2000, astro-ph/0001295.

[59]  F. Rasio,et al.  Thermal and Dynamical Equilibrium in Two-Component Star Clusters , 1999, astro-ph/9912457.

[60]  M. Giersz,et al.  A stochastic Monte Carlo approach to model real star cluster evolution - II. Self-consistent models and primordial binaries , 1999, astro-ph/9911504.

[61]  McMillan,et al.  Black Hole Mergers in the Universe , 1999, The Astrophysical journal.

[62]  F. Rasio,et al.  Monte Carlo Simulations of Globular Cluster Evolution. I. Method and Test Calculations , 1999, astro-ph/9909115.

[63]  Japan.,et al.  Dynamical evolution of rotating stellar systems – II. Post-collapse, equal-mass system , 2001, astro-ph/0109062.

[64]  E. Serabyn,et al.  Hubble Space Telescope/NICMOS Observations of Massive Stellar Clusters near the Galactic Center , 1999 .

[65]  I. McLean,et al.  Massive Stars in the Quintuplet Cluster , 1999, astro-ph/9903281.

[66]  L. Ho Supermassive Black Holes in Galactic Nuclei , 1998, astro-ph/9803307.

[67]  L. Ho in Observational Evidence for Black Holes in the Universe , 1999 .

[68]  Linda J. Smith,et al.  Stellar populations and ages of M82 super star clusters , 1998, astro-ph/9812174.

[69]  T. Lauer,et al.  M32 ± 1 , 1998, astro-ph/9806277.

[70]  I. McLean,et al.  The Pistol Star , 1998 .

[71]  M. Giersz Monte Carlo simulations of star clusters - I. First Results , 1998, astro-ph/9804127.

[72]  I. Bonnell,et al.  Mass segregation in young stellar clusters , 1998 .

[73]  L. Hillenbrand,et al.  A Preliminary Study of the Orion Nebula Cluster Structure and Dynamics , 1998 .

[74]  Haldan N. Cohn,et al.  The Dynamics of M15: Observations of the Velocity Dispersion Profile and Fokker-Planck Models , 1997 .

[75]  D. Heggie,et al.  Statistics of N-body simulations — IV. Unequal masses with a tidal field , 1997 .

[76]  Koji Takahashi Fokker-Planck Models of Star Clusters with Anisotropic Velocity Distributions III. Multi-mass Clusters , 1997, astro-ph/9703190.

[77]  D. Lin,et al.  Coalescence, Star Formation, and the Cluster Initial Mass Function , 1996 .

[78]  G. Quinlan The time-scale for core collapse in spherical star clusters , 1996, astro-ph/9606182.

[79]  D. Bacon,et al.  Close approach during hard binary-binary scattering , 1996, astro-ph/9603036.

[80]  D. Heggie,et al.  Statistics of N-body simulations — III. Unequal masses , 1995, astro-ph/9506143.

[81]  R. Spurzem,et al.  Fokker-Planck Models for Rotating Stellar Systems , 1996 .

[82]  D. Chernoff,et al.  Frequency of Stellar Collisions in Three-Body Heating , 1996 .

[83]  R. Spurzem,et al.  Comparison between Fokker-Planck and gaseous models of star clusters in the multi-mass case revisited , 1995 .

[84]  Hyung-Mok Lee Evolution of galactic nuclei with 10-M⊙ black holes , 1994, astro-ph/9409073.

[85]  S. Tremaine,et al.  A family of models for spherical stellar systems , 1993, astro-ph/9309044.

[86]  M. Giersz,et al.  A comparison of direct N-body integration with anisotropic gaseous models of star clusters , 1993, astro-ph/9305033.

[87]  Walter Dehnen,et al.  A family of potential–density pairs for spherical galaxies and bulges , 1993 .

[88]  Steinn Sigurdsson,et al.  Primordial black holes in globular clusters , 1993, Nature.

[89]  Piet Hut,et al.  Stellar black holes in globular clusters , 1993, Nature.

[90]  G. Gilmore,et al.  The distribution of low-mass stars in the Galactic disc , 1993 .

[91]  Rainer Spurzem,et al.  Anisotropic gaseous models for the evolution of star clusters , 1991 .

[92]  Martin D. Weinberg,et al.  Evolution of globular clusters in the Galaxy , 1990 .

[93]  R. Larson Formation of Star Clusters , 1990 .

[94]  Christopher A. Tout,et al.  The distribution of visual binaries with two bright components , 1989 .

[95]  Stuart Louis Shapiro,et al.  Dynamical evolution of dense clusters of compact stars , 1989 .

[96]  L. Spitzer Dynamical evolution of globular clusters , 1987 .

[97]  S. Inagaki Dynamical Evolution of Globular Clusters , 1987 .

[98]  J. H. Applegate Dynamical Effects of Stellar Evolution in Globular Clusters , 1986 .

[99]  S. Inagaki,et al.  Equipartition in multicomponent gravitational systems , 1985 .

[100]  S. Inagaki Dynamical evolution of multi-component clusters , 1985 .

[101]  P. Hut Binary Formation and Interactions with Field Stars , 1985 .

[102]  S. McMillan,et al.  A unified N-body and statistical treatment of stellar dynamics. I - The hybrid code. II - Applications to globular cluster cores , 1984 .

[103]  M. Rees BLACK HOLE MODELS FOR ACTIVE GALACTIC NUCLEI , 1984 .

[104]  J. Stodolkiewicz Dynamical evolution of globular clusters. I , 1982 .

[105]  Glenn E. Miller,et al.  The Initial mass function and stellar birthrate in the solar neighborhood , 1979 .

[106]  E. Vishniac Necessary condition for equilibrium in stellar systems with a continuous mass spectrum , 1978 .

[107]  Douglas C. Heggie,et al.  Binary evolution in stellar dynamics , 1975 .

[108]  L. Spitzer,et al.  Random gravitational encounters and the evolution of spherical systems. VII. Systems with several mass groups. , 1975 .

[109]  M. Hénon,et al.  Dynamical structure and evolution of stellar systems , 1973 .

[110]  M. Hénon Monte Carlo models of star clusters , 1971 .

[111]  W. C. Saslaw EQUIPARTITION IN GALACTIC NUCLEI AND GRAVITATING SYSTEMS. , 1971 .

[112]  R. Larson The Evolution of Star Clusters , 1970 .

[113]  L. Spitzer,et al.  Equipartition and the Formation of Compact Nuclei in Spherical Stellar Systems , 1969 .

[114]  Astronomer Royal,et al.  The gravo-thermal catastrophe in isothermal spheres and the onset of red-giant structure for stellar systems , 1968 .

[115]  Subrahmanyan Chandrasekhar,et al.  Principles of Stellar Dynamics , 1942 .