Gas-phase combustion synthesis of particles

Abstract The current work summarizes recent experimental and theoretical investigations of the fundamental processes governing gas-phase combustion synthesis of particles. Various experimental methods and results are reviewed for the production of non-oxide, single-oxide, and mixed-oxide powders. Parameters influencing particle morphology and composition including electric field effects are discussed. Nucleation and growth models are presented for the different growth regimes, including homogeneous nucleation, agglomeration, and coalescence.

[1]  Thermochemical data for CVD modeling from ab initio calculations , 1993 .

[2]  Constantine M. Megaridis,et al.  Morphology of flame-generated soot as determined by thermophoretic sampling , 1987 .

[3]  M. Zachariah,et al.  Aerosol processing of YBaCuO superconductors in a flame reactor , 1991 .

[4]  H. G. Semerjian,et al.  Simulation of ceramic particle formation: Comparison with in‐situ measurements , 1989 .

[5]  R. Evershed,et al.  Mat Res Soc Symp Proc , 1995 .

[6]  B. Wessels,et al.  Metal-organic Chemical Vapor Deposition of Electronic Ceramics , 1994 .

[7]  K. Gonsalves,et al.  Nanotechnology: Molecularly Designed Materials , 1996 .

[8]  G. D. Ulrich,et al.  III. Coalescence as a Rate-Controlling Process , 1977 .

[9]  Sotiris E. Pratsinis,et al.  Gas-phase manufacture of particulates: interplay of chemical reaction and aerosol coagulation in the free-molecular regime , 1989 .

[10]  S. Pratsinis,et al.  The effect of ionic additives on aerosol coagulation , 1992 .

[11]  R. Axelbaum,et al.  Nanoscale unagglomerated nonoxide particles from a sodium coflow flame , 1995 .

[12]  S. Pratsinis,et al.  Dopants in Flame Synthesis of Titania , 1995 .

[13]  Wenhua H. Zhu,et al.  The role of gas mixing in flame synthesis of titania powders , 1996 .

[14]  E. Potkay,et al.  Temperature measurements in a vapor axial deposition flame by spontaneous Raman spectroscopy , 1989 .

[15]  S. Pratsinis,et al.  Formation of agglomerate particles by coagulation and sintering—Part I. A two-dimensional solution of the population balance equation , 1991 .

[16]  S. Pratsinis,et al.  Corona‐assisted flame synthesis of ultrafine titania particles , 1995 .

[17]  R. Gordon,et al.  Kinetic Modeling of the Chemical Vapor Deposition of Silicon Dioxide from Silane or Disilane and Nitrous Oxide , 1990 .

[18]  S. Pratsinis,et al.  Gas phase production of particles in reactive turbulent flows , 1991 .

[19]  H. Semerjian,et al.  Interpretation of optical measurements of soot in flames. Final report , 1983 .

[20]  M. Zachariah,et al.  Strategies for laser excited fluorescence spectroscopy. Measurements of gas phase species during particle formation , 1994 .

[21]  J. Katz,et al.  Silica particle synthesis in a counterflow diffusion flame reactor , 1989 .

[22]  Theoretical Prediction of Gas-Phase Nucleation Kinetics of SiO , 1993 .

[23]  H. O'neal,et al.  Stoichiometry and possible mechanism of SiH4O2 explosions , 1987 .

[24]  J. Seinfeld,et al.  Sectional representations for simulating aerosol dynamics , 1980 .

[25]  V. Hlavácek,et al.  Preparation of tungsten and tungsten carbide submicron powders in a chlorine-hydrogen flame by the chemical vapor phase reaction , 1990 .

[26]  A. Hurd,et al.  In situ measurement of flame-formed silica particles using dynamic light scattering. , 1987, Applied Optics.

[27]  Michael E. Coltrin,et al.  Theoretical study of the heats of formation of Si2Hn (n = 0-6) compounds and trisilane , 1986 .

[28]  Felix Jiri Weinberg,et al.  Electrical aspects of combustion , 1969 .

[29]  D. E. Rosner,et al.  Synthesis and restructuring of inorganic nano-particles in counterflow diffusion flames , 1996 .

[30]  H. F. Calcote,et al.  Flame synthesis of high purity, nanosized crystalline silicon carbide powder , 1995 .

[31]  W. Yuill,et al.  Research Needs in Aerosol Processing , 1991 .

[32]  V. Hlavácek,et al.  Characteristics of the hydrogen-chlorine flame and the effect of different parameters for the synthesis of tungsten powders , 1991 .

[33]  Seiichiro Koda,et al.  Kinetic aspects of oxidation and combustion of silane and related compounds , 1992 .

[34]  J. Katz,et al.  Formation of mixed oxide powders in flames: Part I. TiO_2−SiO_2 , 1992 .

[35]  M. Zachariah,et al.  Dynamic light scattering and angular dissymmetry for the in situ measurement of silicon dioxide particle synthesis in flames. , 1989, Applied optics.

[36]  P. Biswas,et al.  In situ characterization of vapor phase growth of iron oxide-silica nanocomposites: Part I. 2-D planar laser-induced fluorescence and Mie imaging , 1996 .

[37]  Hung V. Nguyen,et al.  A method for the synthesis of submicron particles , 1987 .

[38]  T. Mccay Combustion Diagnostics by Nonintrusive Methods , 1984 .

[39]  H. D. Lin,et al.  Formation of particles in a H2O2 counterflow diffusion flame doped with SiH4 or SiCl4 , 1991 .

[40]  R. Birringer,et al.  Ceramics ductile at low temperature , 1987, Nature.

[41]  H. O'neal,et al.  Mechanism of the thermally induced gas-phase decomposition of silane: a revisitation , 1992 .

[42]  M. Zachariah,et al.  Controlled Nucleation in Aerosol Reactors for Suppression of Agglomerate Formation: A Numerical Study , 1990 .

[43]  Richard C. Flagan,et al.  A discrete-sectional solution to the aerosol dynamic equation , 1988 .

[44]  J. Katz,et al.  Formation of V_2O_5-based mixed oxides in flames , 1993 .

[45]  M. Zachariah,et al.  Theoretical Calculation of Thermochemistry, Energetics, and Kinetics of High-Temperature SixHyOz Reactions , 1995 .

[46]  Sotiris E. Pratsinis,et al.  Formation of agglomerate particles by coagulation and sintering—Part II. The evolution of the morphology of aerosol-made titania, silica and silica-doped titania powders , 1993 .

[47]  Gary L. Messing,et al.  Ceramic Powder Science III , 1990 .

[48]  G. D. Ulrich,et al.  Particle Growth in Flames. II: Experimental Results for Silica Particles , 1976 .

[49]  G. D. Ulrich,et al.  Aggregation and growth of submicron oxide particles in flames , 1982 .

[50]  Sotiris E. Pratsinis,et al.  Synthesis and evaluation of titania powders for photodestruction of phenol , 1994 .

[51]  K. Gonsalves,et al.  Molecularly Designed Ultrafine/Nanostructured Materials , 1994 .

[52]  Alan J. Hurd,et al.  In situ growth and structure of fractal silica aggregates in a flame , 1988 .

[53]  J. Katz,et al.  Formation of mixed oxide powders in flames: Part II. SiO_2−GeO_2 and Al_2O_3−TiO_2 , 1992 .

[54]  Atomistic Simulation of Vapor-Phase Nanoparticle Formation , 1994 .

[55]  G. D. Ulrich,et al.  Theory of Particle Formation and Growth in Oxide Synthesis Flames , 1971 .

[56]  R. Flagan,et al.  Controlled Nucleation Aerosol Reactors: Production of Bulk Silicon , 1986 .

[57]  R. Flagan,et al.  Onset of runaway nucleation in aerosol reactors , 1987 .

[58]  M. Zachariah,et al.  Multiphoton ionization spectroscopy measurements of silicon atoms during vapor‐phase synthesis of ceramic particles , 1990 .

[59]  Joseph Katz,et al.  The counterflow diffusion flame burner: A new tool for the study of the nucleation of refractory compounds , 1985 .

[60]  Molecular Dynamics Simulation of Large Cluster Growth , 1993 .

[61]  P. Ho,et al.  Theoretical Study of the Thermochemistry of Molecules in the SiO-H System , 2001 .

[62]  Donald R Burgess Gas Phase Reactions Relevant to Chemical Vapor Deposition: Optical Diagnostics , 1989 .

[63]  M. Zachariah,et al.  Optical and Modeling Studies of Sodium/Halide Reactions for the Formation of Titanium and Boron Nanoparticles , 1996 .

[64]  J. Katz,et al.  Formation and characterization of nanostructured V—P—O particles in flames: A new route for the formation of catalysts , 1994 .

[65]  W. Koch,et al.  The effect of particle coalescence on the surface area of a coagulating aerosol , 1990 .

[66]  Sotiris E. Pratsinis,et al.  A discrete-sectional model for particulate production by gas-phase chemical reaction and aerosol coagulation in the free-molecular regime , 1990 .

[67]  Estela Blaisten-Barojas,et al.  Properties of Silicon Nanoparticles: A Molecular Dynamics Study , 1996 .

[68]  M. Allendorf,et al.  Theoretical study of the thermochemistry of molecules in the silicon-carbon-hydrogen system , 1992 .

[69]  H. Schlegel,et al.  Heats of formation of silicon hydride oxide (SiHnO and SiHnO2) calculated by ab initio molecular orbital methods at the G-2 level of theory , 1993 .

[70]  D. D. Beck,et al.  The dissociative adsorption of hydrogen sulfide over nanophase titanium dioxide , 1992 .

[71]  A. D'alessio Laser Light Scattering and Fluorescence Diagnostics of Rich Flames Produced by Gaseous and Liquid Fuels , 1981 .

[72]  Michael E. Coltrin,et al.  A theoretical study of the heats of formation of silicon hydride (SiHn), silicon chloride (SiCln), and silicon hydride chloride (SiHnClm) compounds , 1985 .

[73]  A. Hepp Covalent ceramics III - science and technology of non-oxides : symposium held November 27-30, 1995, Boston, Massachusetts, U.S.A. , 1996 .

[74]  M. Zachariah,et al.  Application of Ab Initio Molecular Orbital and Reaction Rate Theories to Nucleation Kinetics , 1993 .

[75]  Robert J. Kee,et al.  A Mathematical Model of the Coupled Fluid Mechanics and Chemical Kinetics in a Chemical Vapor Deposition Reactor , 1984 .

[76]  P. Biswas,et al.  In Situ Characterization and Modeling of the Vapor-Phase Formation of a Magnetic Nanocomposite , 1996 .

[77]  Weber,et al.  Computer simulation of local order in condensed phases of silicon. , 1985, Physical review. B, Condensed matter.

[78]  Sotiris E. Pratsinis,et al.  Monte Carlo simulation of particle coagulation and sintering , 1994 .