Chemical Abundance Distributions of Galactic Halos and Their Satellite Systems in a ΛCDM Universe

We present a cosmologically motivated model for the hierarchical formation of the stellar halo that includes a semianalytic treatment of galactic chemical enrichment coupled to numerical simulations that track the orbital evolution and tidal disruption of satellites. A major motivating factor in this investigation is the observed systematic difference between the chemical abundances of stars in satellite galaxies and those in the Milky Way halo. Specifically, for the same [Fe/H] values, stars in neighboring satellite galaxies display significantly lower [α/Fe] ratios than stars in the halo. We find that the observed chemical abundance patterns are a natural outcome of the process of hierarchical assembly of the Galaxy. This result follows because the stellar halo in this context is built up from satellite galaxies accreted early on (more than 8-9 Gyr ago) and enriched in α-elements produced in Type II supernovae. In contrast, satellites that still survive today are typically accreted late (within the last 4-5 Gyr) with nearly solar [α/Fe] values as a result of contributions from both Type II and Type Ia supernovae. We use our model to investigate the abundance distribution functions (using both [Fe/H] and [α/Fe] ratios) for stars in the halo and in surviving satellites. Our results suggest that the shapes and peaks in the abundance distribution functions provide a direct probe of the accretion histories of galaxies.

[1]  W. Freedman,et al.  The Star Formation History of the Local Group Dwarf Galaxy Leo I , 1998, astro-ph/9906121.

[2]  Lars Hernquist,et al.  Λ Cold Dark Matter, Stellar Feedback, and the Galactic Halo Abundance Pattern , 2005, astro-ph/0501398.

[3]  J. B. Laird,et al.  A Survey of Proper Motion Stars. XIII. The Halo Population , 1996 .

[4]  M. Rees,et al.  Core condensation in heavy halos: a two-stage theory for galaxy formation and clustering , 1978 .

[5]  R. Kudritzki,et al.  First Stellar Abundances in the Dwarf Irregular Galaxy Sextans A , 2004, astro-ph/0401411.

[6]  S. Cole,et al.  Merger rates in hierarchical models of galaxy formation , 1993 .

[7]  S. Hawley,et al.  Absolute Proper Motions to B ~ 22.5: Large-Scale Streaming Motions and the Structure and Origin of the Galactic Halo , 1996 .

[8]  The phase-space structure of cold dark matter haloes : insights into the Galactic halo , 2002, astro-ph/0208041.

[9]  Metallicity and Kinematics of M31’s Outer Stellar Halo from a Keck Spectroscopic Survey* , 2002, astro-ph/0203389.

[10]  Frank R Wilson N. R. A. , 1933 .

[11]  S. Bergh Radii, structure, and orbits of globular clusters , 1994 .

[12]  R.F.G. Wyse,et al.  The merging history of the Milky Way , 1996 .

[13]  The role of stellar feedback and dark matter in the evolution of dwarf galaxies , 1999, astro-ph/9905280.

[14]  Abundance Patterns in the Draco, Sextans, and Ursa Minor Dwarf Spheroidal Galaxies , 2000, astro-ph/0009505.

[15]  B. Tinsley,et al.  Evolution of galaxies and stellar populations , 1977 .

[16]  University of British Columbia,et al.  Feedback and the fundamental line of low-luminosity low-surface-brightness/dwarf galaxies , 2002, astro-ph/0210454.

[17]  Ivan R. King,et al.  The structure of star clusters. I. an empirical density law , 1962 .

[18]  S. Ryan,et al.  Subdwarf studies. II - Abundances and kinematics from medium resolution spectra. III - The halo metallicity distribution , 1991 .

[19]  R. Wyse,et al.  Element Ratios and the Formation of the Stellar Halo , 1998, astro-ph/9805144.

[20]  A. Ferrara,et al.  Starburst-driven Mass Loss from Dwarf Galaxies: Efficiency and Metal Ejection , 1998, astro-ph/9801237.

[21]  Ucla,et al.  The Andromeda project - I. Deep HST-WFPC2 V, I photometry of 16 fields toward the disk and the halo of the M 31 galaxy. Probing the stellar content and metallicity distribution , 2002, astro-ph/0212531.

[22]  Photometry and the Metallicity Distribution of the Outer Halo of M31. II. The 30 Kiloparsec Field , 2004, astro-ph/0405403.

[23]  Yipeng Jing,et al.  The growth and structure of dark matter haloes , 2003 .

[24]  James S. Bullock,et al.  Halo Substructure and the Power Spectrum , 2003 .

[25]  H. Morrison,et al.  Formation of the galactic halo .... inside and out : a meeting held in honor of the 65th birthday of George Preston, Tucson, Arizona, 9-11 October 1995 , 1996 .

[26]  R. Larson Effects of Supernovae on the Early Evolution of Galaxies , 1974 .

[27]  E. Tolstoy,et al.  Stellar Chemical Signatures and Hierarchical Galaxy Formation , 2004, astro-ph/0406120.

[28]  J. B. Laird,et al.  A Survey of Proper-Motion Stars. VII. The Halo Metallicity Distribution Function , 1988 .

[29]  Kathryn V. Johnston,et al.  Tracing Galaxy Formation with Stellar Halos. I. Methods , 2005 .

[30]  M. Irwin,et al.  A dwarf satellite galaxy in Sagittarius , 1994, Nature.

[31]  Michael J. West,et al.  Evidence for the Hierarchical Formation of the Galactic Spheroid , 1999, astro-ph/9911527.

[32]  M. Shetrone,et al.  VLT/UVES Abundances in Four Nearby Dwarf Spheroidal Galaxies. I. Nucleosynthesis and Abundance Ratios , 2002, astro-ph/0211167.

[33]  A. McWilliam ABUNDANCE RATIOS AND GALACTIC CHEMICAL EVOLUTION , 1997 .

[34]  E. Grebel,et al.  Modes of star formation and the origin of field populations : proceedings of a workshop held at Max-Planck Institute of Astronomy, Heidelberg, Germany, 9-13 October 2000 , 2002 .

[35]  K. Freeman,et al.  The New Galaxy: Signatures of Its Formation , 2002, astro-ph/0208106.

[36]  Hugo Martel,et al.  The Emergence of the Thick Disk in a CDM Universe II: Colors and Abundance Patterns. , 2005 .

[37]  Eva K. Grebel,et al.  The Progenitors of Dwarf Spheroidal Galaxies , 2002, astro-ph/0301025.

[38]  Photometry and the Metallicity Distribution of the Outer Halo of M31 , 2001, astro-ph/0101436.

[39]  R. Zinn,et al.  Compositions of halo clusters and the formation of the galactic halo , 1978 .

[40]  S. Majewski Galactic Structure Surveys and the Evolution of the Milky Way , 1993 .

[41]  R. Wyse,et al.  The chemical evolution of the Galaxy , 1986, Nature.

[42]  Vanessa Hill,et al.  Two Distinct Ancient Components in the Sculptor Dwarf Spheroidal Galaxy: First Results from the Dwarf Abundances and Radial Velocities Team , 2004 .

[43]  Kinematics of Metal-poor Stars in the Galaxy. III. Formation of the Stellar Halo and Thick Disk as Revealed from a Large Sample of Nonkinematically Selected Stars , 2000, astro-ph/0003087.

[44]  F. Hartwick The chemical evolution of the galactic halo , 1976 .

[45]  Dynamical and chemical evolution of gas-rich dwarf galaxies , 2000, astro-ph/0002370.

[46]  R. Buser,et al.  The formation and early evolution of the Milky Way galaxy. , 2000, Science.

[47]  Joel R. Primack,et al.  Formation of galaxies and large-scale structure with cold dark matter , 1984, Nature.

[48]  J. Silk,et al.  Dwarf galaxies, cold dark matter, and biased galaxy formation , 1986 .

[49]  U. California,et al.  How to plant a merger tree , 1997, astro-ph/9711080.

[50]  Mario Mateo,et al.  DWARF GALAXIES OF THE LOCAL GROUP , 1998, astro-ph/9810070.

[51]  Rodrigo Ibata,et al.  Sagittarius: the nearest dwarf galaxy , 1995 .