Cytoarchitecture and Maps of the Human Cerebral Cortex

[1]  G. Rizzolatti,et al.  Premotor cortex and the recognition of motor actions. , 1996, Brain research. Cognitive brain research.

[2]  Benjamin D. Singer,et al.  Retinotopic Organization of Human Ventral Visual Cortex , 2009, The Journal of Neuroscience.

[3]  Peter L. Strick,et al.  Anatomical and physiological organization of the non-primary motor cortex , 1984, Trends in Neurosciences.

[4]  K Zilles,et al.  Neurofilament protein distribution in the macaque monkey dorsolateral premotor cortex , 2000, The European journal of neuroscience.

[5]  Lars Hömke,et al.  A multigrid method for anisotropic PDEs in elastic image registration , 2006, Numer. Linear Algebra Appl..

[6]  Karl Zilles,et al.  Cytology and receptor architecture of human anterior cingulate cortex , 2008, The Journal of comparative neurology.

[7]  K. Zilles,et al.  A link between the systems: functional differentiation and integration within the human insula revealed by meta-analysis , 2010, Brain Structure and Function.

[8]  K. Brodmann Vergleichende Lokalisationslehre der Großhirnrinde : in ihren Prinzipien dargestellt auf Grund des Zellenbaues , 1985 .

[9]  K. Amunts,et al.  Functional characterization and differential coactivation patterns of two cytoarchitectonic visual areas on the human posterior fusiform gyrus , 2014, Human brain mapping.

[10]  K. Amunts,et al.  Brodmann's Areas 17 and 18 Brought into Stereotaxic Space—Where and How Variable? , 2000, NeuroImage.

[11]  O. Foerster,et al.  THE MOTOR CORTEX IN MAN IN THE LIGHT OF HUGHLINGS JACKSON'S DOCTRINES , 1936 .

[12]  L. Jäncke,et al.  Auditory lateralization and planum temporale asymmetry. , 1993, Neuroreport.

[13]  P. Strick,et al.  Motor areas of the medial wall: a review of their location and functional activation. , 1996, Cerebral cortex.

[14]  A. Walker,et al.  A cytoarchitectural study of the prefrontal area of the macaque monkey , 1940 .

[15]  H. Braak,et al.  A primitive gigantopyramidal field buried in the depth of the cingulate sulcus of the human brain , 1976, Brain Research.

[16]  Muge M. Bakircioglu,et al.  Mapping visual cortex in monkeys and humans using surface-based atlases , 2001, Vision Research.

[17]  A. Galaburda,et al.  Cytoarchitectonic organization of the human auditory cortex , 1980, The Journal of comparative neurology.

[18]  Deepak N. Pandya,et al.  The prefrontal cortex: Comparative architectonic organization in the human and the macaque monkey brains , 2012, Cortex.

[19]  A. Schleicher,et al.  Comparative aspects of the primate posterior cingulate cortex , 1986, The Journal of comparative neurology.

[20]  S. Dehaene,et al.  Language-specific tuning of visual cortex? Functional properties of the Visual Word Form Area. , 2002, Brain : a journal of neurology.

[21]  A. Burkhalter,et al.  Organization of corticocortical connections in human visual cortex. , 1989, Proceedings of the National Academy of Sciences of the United States of America.

[22]  I N FILIMONOFF,et al.  A rational subdivision of the cerebral cortex. , 1947, Archives of neurology and psychiatry.

[23]  Giuseppe Luppino,et al.  Thalamic input to mesial and superior area 6 in the macaque monkey , 1996, The Journal of comparative neurology.

[24]  David J. Heeger,et al.  Pattern-motion responses in human visual cortex , 2002, Nature Neuroscience.

[25]  R. Tootell,et al.  Molecular differences among neurons reveal an organization of human visual cortex. , 1990, Proceedings of the National Academy of Sciences of the United States of America.

[26]  Leslie G. Ungerleider Two cortical visual systems , 1982 .

[27]  J. Tanji The supplementary motor area in the cerebral cortex , 1994, Neuroscience Research.

[28]  J W Belliveau,et al.  Borders of multiple visual areas in humans revealed by functional magnetic resonance imaging. , 1995, Science.

[29]  D. Pandya,et al.  Distinct Parietal and Temporal Pathways to the Homologues of Broca's Area in the Monkey , 2009, PLoS biology.

[30]  G Rizzolatti,et al.  Parcellation of human mesial area 6: cytoarchitectonic evidence for three separate areas , 1998, The European journal of neuroscience.

[31]  K. Amunts,et al.  The human inferior parietal lobule in stereotaxic space , 2008, Brain Structure and Function.

[32]  P. Goldman-Rakic,et al.  Cytoarchitectonic definition of prefrontal areas in the normal human cortex: II. Variability in locations of areas 9 and 46 and relationship to the Talairach Coordinate System. , 1995, Cerebral cortex.

[33]  Alan C. Evans,et al.  BigBrain: An Ultrahigh-Resolution 3D Human Brain Model , 2013, Science.

[34]  D. Pandya,et al.  Architecture and frontal cortical connections of the premotor cortex (area 6) in the rhesus monkey , 1987, The Journal of comparative neurology.

[35]  K. Amunts,et al.  Multimodal architectonic mapping of human superior temporal gyrus , 2005, Anatomy and Embryology.

[36]  D. Heeger,et al.  Retinotopy and Functional Subdivision of Human Areas MT and MST , 2002, The Journal of Neuroscience.

[37]  D. V. van Essen,et al.  Antibody labeling of functional subdivisions in visual cortex: Cat-301 immunoreactivity in striate and extrastriate cortex of the macaque monkey , 1990, Visual Neuroscience.

[38]  A. Schleicher,et al.  The human parietal operculum. I. Cytoarchitectonic mapping of subdivisions. , 2006, Cerebral cortex.

[39]  Alex R. Wade,et al.  Visual field maps and stimulus selectivity in human ventral occipital cortex , 2005, Nature Neuroscience.

[40]  K. Zilles,et al.  Areas 3a, 3b, and 1 of Human Primary Somatosensory Cortex 2. Spatial Normalization to Standard Anatomical Space , 2000, NeuroImage.

[41]  A. Schleicher,et al.  Observer-independent cytoarchitectonic mapping of the human superior parietal cortex. , 2008, Cerebral cortex.

[42]  M. Mesulam,et al.  From sensation to cognition. , 1998, Brain : a journal of neurology.

[43]  G. Luppino,et al.  Cortical connections of the anterior (F5a) subdivision of the macaque ventral premotor area F5 , 2011, Brain Structure and Function.

[44]  Karl Zilles,et al.  Architecture, Connectivity, and Transmitter Receptors of Human Extrastriate Visual Cortex , 1997 .

[45]  F. Sanides Die Architektonik des Menschlichen Stirnhirns , 1962 .

[46]  Iwona Stepniewska,et al.  Ipsilateral cortical connections of dorsal and ventral premotor areas in New World owl monkeys , 2006, The Journal of comparative neurology.

[47]  Richard S. J. Frackowiak,et al.  Area V5 of the human brain: evidence from a combined study using positron emission tomography and magnetic resonance imaging. , 1993, Cerebral cortex.

[48]  R. Porter,et al.  What is area 3a? , 1980, Brain Research Reviews.

[49]  K Zilles,et al.  Cerebral asymmetry: MR planimetry of the human planum temporale. , 1989, Journal of computer assisted tomography.

[50]  Simon B. Eickhoff,et al.  A new SPM toolbox for combining probabilistic cytoarchitectonic maps and functional imaging data , 2005, NeuroImage.

[51]  G. Rizzolatti,et al.  Afferent and efferent projections of the inferior area 6 in the macaque monkey , 1986, The Journal of comparative neurology.

[52]  Thomas R. Knösche,et al.  Anatomical and functional parcellation of the human lateral premotor cortex , 2008, NeuroImage.

[53]  A. Schleicher,et al.  Cytoarchitectonic analysis of the human extrastriate cortex in the region of V5/MT+: a probabilistic, stereotaxic map of area hOc5. , 2006, Cerebral cortex.

[54]  P S Goldman-Rakic,et al.  Cytoarchitectonic definition of prefrontal areas in the normal human cortex: I. Remapping of areas 9 and 46 using quantitative criteria. , 1995, Cerebral cortex.

[55]  Katrin Amunts,et al.  The mid-fusiform sulcus: A landmark identifying both cytoarchitectonic and functional divisions of human ventral temporal cortex , 2014, NeuroImage.

[56]  N. Geschwind,et al.  Human Brain: Left-Right Asymmetries in Temporal Speech Region , 1968, Science.

[57]  A. Schleicher,et al.  Two different areas within the primary motor cortex of man , 1996, Nature.

[58]  G. Rizzolatti,et al.  Architecture of superior and mesial area 6 and the adjacent cingulate cortex in the macaque monkey , 1991, The Journal of comparative neurology.

[59]  A. Schleicher,et al.  Broca's region revisited: Cytoarchitecture and intersubject variability , 1999, The Journal of comparative neurology.

[60]  R. Tootell,et al.  Anatomical evidence for MT and additional cortical visual areas in humans. , 1995, Cerebral cortex.

[61]  Svetlana S. Georgieva,et al.  The Processing of Three-Dimensional Shape from Disparity in the Human Brain , 2009, The Journal of Neuroscience.

[62]  G. Orban,et al.  The Retinotopic Organization of the Human Middle Temporal Area MT/V5 and Its Cortical Neighbors , 2010, The Journal of Neuroscience.

[63]  P. Morosan,et al.  Broca's Region: Novel Organizational Principles and Multiple Receptor Mapping , 2010, PLoS biology.

[64]  N. Geschwind,et al.  Human Brain: Cytoarchitectonic Left-Right Asymmetries in the Temporal Speech Region , 1978 .

[65]  A. Schleicher,et al.  The Somatosensory Cortex of Human: Cytoarchitecture and Regional Distributions of Receptor-Binding Sites , 1997, NeuroImage.

[66]  H. Barbas,et al.  Area 4 has layer IV in adult primates , 2014, The European journal of neuroscience.

[67]  D. Pandya,et al.  Dorsolateral prefrontal cortex: comparative cytoarchitectonic analysis in the human and the macaque brain and corticocortical connection patterns , 1999, The European journal of neuroscience.

[68]  L. Werner,et al.  A Golgi deimpregnation study of neurons in the rhesus monkey visual cortex (Areas 17 and 18) , 2004, Anatomy and Embryology.

[69]  K. Zilles,et al.  Human Somatosensory Area 2: Observer-Independent Cytoarchitectonic Mapping, Interindividual Variability, and Population Map , 2001, NeuroImage.

[70]  Todd M Preuss,et al.  Human-specific organization of primary visual cortex: alternating compartments of dense Cat-301 and calbindin immunoreactivity in layer 4A. , 2002, Cerebral cortex.

[71]  K. Zilles,et al.  Laminar distribution and co-distribution of neurotransmitter receptors in early human visual cortex , 2007, Brain Structure and Function.

[72]  A. Schleicher,et al.  Cytoarchitectonic mapping of the human dorsal extrastriate cortex , 2012, Brain Structure and Function.

[73]  Nicola Palomero-Gallagher,et al.  Subdivisions of human parietal area 5 revealed by quantitative receptor autoradiography: a parietal region between motor, somatosensory, and cingulate cortical areas , 2005, NeuroImage.

[74]  A. Murata,et al.  Largely segregated parietofrontal connections linking rostral intraparietal cortex (areas AIP and VIP) and the ventral premotor cortex (areas F5 and F4) , 1999, Experimental Brain Research.

[75]  C. Economo,et al.  Die Cytoarchitektonik der Hirnrinde des erwachsenen Menschen , 1925 .

[76]  O. Vogt,et al.  Die vergleichend-architektonische und die vergleichend-reizphysiologische Felderung der Großhirnrinde unter besonderer Berücksichtigung der menschlichen , 1926, Naturwissenschaften.

[77]  K. Zilles,et al.  Functions and structures of the motor cortices in humans , 1996, Current Opinion in Neurobiology.

[78]  A. Schleicher,et al.  Areas 3a, 3b, and 1 of Human Primary Somatosensory Cortex 1. Microstructural Organization and Interindividual Variability , 1999, NeuroImage.

[79]  H. Seldon Structure of human auditory cortex. I. Cytoarchitectonics and dendritic distributions , 1981, Brain Research.

[80]  Morphologische und cytoarchitektonische Studien über den Bau der unteren Frontalwindung bei Normalen und Taubstummen. Ihre individuellen und Seitenunterschiede , 1930 .

[81]  K Zilles,et al.  Quantitative cytoarchitectonics of the posterior cingulate cortex in primates , 1986, The Journal of comparative neurology.

[82]  Alan C. Evans,et al.  A new anatomical landmark for reliable identification of human area V5/MT: a quantitative analysis of sulcal patterning. , 2000, Cerebral cortex.

[83]  Stephanie Clarke,et al.  Architecture, Connectivity, and Transmitter Receptors of Human Auditory Cortex , 2012 .

[84]  R K Carder,et al.  Neurochemical compartmentation of monkey and human visual cortex: Similarities and variations in calbindin immunoreactivity across species , 1993, Visual Neuroscience.

[85]  C Galletti,et al.  Superior area 6 afferents from the superior parietal lobule in the macaque monkey , 1998, The Journal of comparative neurology.

[86]  G. Rizzolatti,et al.  Localization of grasp representations in humans by PET: 1. Observation versus execution , 1996, Experimental Brain Research.

[87]  Katrin Amunts,et al.  Receptor architecture of visual areas in the face and word-form recognition region of the posterior fusiform gyrus , 2013, Brain Structure and Function.

[88]  Katrin Amunts,et al.  Linking retinotopic fMRI mapping and anatomical probability maps of human occipital areas V1 and V2 , 2005, NeuroImage.

[89]  W PENFIELD,et al.  The supplementary motor area of the cerebral cortex; a clinical and experimental study. , 1951, A.M.A. archives of neurology and psychiatry.

[90]  K. Zilles,et al.  Brain atlases - a new research tool , 1994, Trends in Neurosciences.

[91]  S. Zeki The response properties of cells in the middle temporal area (area MT) of owl monkey visual cortex , 1980, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[92]  F. Dick,et al.  Mapping the Human Cortical Surface by Combining Quantitative T1 with Retinotopy† , 2012, Cerebral cortex.

[93]  Stefan Geyer,et al.  Prologue: Toward the Concept of a Cortical Control of Voluntary Movements , 2004 .

[94]  J. Kaas,et al.  Architectionis, somatotopic organization, and ipsilateral cortical connections of the primary motor area (M1) of owl monkeys , 1993, The Journal of comparative neurology.

[95]  S. Zeki Functional organization of a visual area in the posterior bank of the superior temporal sulcus of the rhesus monkey , 1974, The Journal of physiology.

[96]  G. Rizzolatti,et al.  Functional organization of inferior area 6 in the macaque monkey , 1988, Experimental Brain Research.

[97]  K. Grill-Spector,et al.  Developmental neuroimaging of the human ventral visual cortex , 2008, Trends in Cognitive Sciences.

[98]  Dr. Stefan Geyer The Microstructural Border Between the Motor and the Cognitive Domain in the Human Cerebral Cortex , 2004, Advances in Anatomy Embryology and Cell Biology.

[99]  R. Malach,et al.  Object-related activity revealed by functional magnetic resonance imaging in human occipital cortex. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[100]  K. Amunts,et al.  The human parietal operculum. II. Stereotaxic maps and correlation with functional imaging results. , 2006, Cerebral cortex.

[101]  E. G. Jones,et al.  Monoclonal antibody that identifies subsets of neurones in the central visual system of monkey and cat , 1984, Nature.

[102]  Karl Zilles,et al.  Cyto‐ and receptor architecture of area 32 in human and macaque brains , 2013, The Journal of comparative neurology.

[103]  A. Schleicher,et al.  Architectonics of the human cerebral cortex and transmitter receptor fingerprints: reconciling functional neuroanatomy and neurochemistry , 2002, European Neuropsychopharmacology.

[104]  Roland Peyron,et al.  Operculo-insular pain (parasylvian pain): a distinct central pain syndrome. , 2010, Brain : a journal of neurology.

[105]  Katrin Amunts,et al.  The human inferior parietal cortex: Cytoarchitectonic parcellation and interindividual variability , 2006, NeuroImage.

[106]  Leslie G. Ungerleider,et al.  Object vision and spatial vision: two cortical pathways , 1983, Trends in Neurosciences.

[107]  G Rizzolatti,et al.  The classic supplementary motor area is formed by two independent areas. , 1996, Advances in neurology.

[108]  Persistence of layer IV in the primary motor cortex (area 4) of children with cerebral palsy. , 1997, Journal fur Hirnforschung.

[109]  Peter A. Tass,et al.  Pattern reversal visual evoked responses of V1/V2 and V5/MT as revealed by MEG combined with probabilistic cytoarchitectonic maps , 2006, NeuroImage.

[110]  J. Morrison,et al.  Neurofilament protein defines regional patterns of cortical organization in the macaque monkey visual system: A quantitative immunohistochemical analysis , 1995, The Journal of comparative neurology.

[111]  A. Schleicher,et al.  Mapping of human and macaque sensorimotor areas by integrating architectonic, transmitter receptor, MRI and PET data. , 1995, Journal of anatomy.

[112]  P. Morosan,et al.  Probabilistic Mapping and Volume Measurement of Human Primary Auditory Cortex , 2001, NeuroImage.

[113]  P. Flechsig Anatomie des menschlichen Gehirns und Rückenmarks : auf myelogenetischer Grundlage , 1920 .

[114]  E G Jones,et al.  Neuronal populations stained with the monoclonal antibody Cat-301 in the mammalian cerebral cortex and thalamus , 1988, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[115]  Angela R. Laird,et al.  Cytoarchitecture, probability maps and functions of the human frontal pole , 2014, NeuroImage.

[116]  K Zilles,et al.  Anatomy and transmitter receptors of the supplementary motor areas in the human and nonhuman primate brain. , 1996, Advances in neurology.

[117]  A. Schleicher,et al.  Ventral visual cortex in humans: Cytoarchitectonic mapping of two extrastriate areas , 2007, Human brain mapping.

[118]  N. Kanwisher,et al.  The fusiform face area: a cortical region specialized for the perception of faces , 2006, Philosophical Transactions of the Royal Society B: Biological Sciences.

[119]  Kalanit Grill-Spector,et al.  Sparsely-distributed organization of face and limb activations in human ventral temporal cortex , 2010, NeuroImage.

[120]  Simon B. Eickhoff,et al.  Comparison of functional and cytoarchitectonic maps of human visual areas V1, V2, V3d, V3v, and V4(v) , 2010, NeuroImage.

[121]  P. Morosan,et al.  Human Primary Auditory Cortex: Cytoarchitectonic Subdivisions and Mapping into a Spatial Reference System , 2001, NeuroImage.

[122]  C. Economo,et al.  Über Windungsrelief, Maße und Rindenarchitektonik der Supratemporalfläche, ihre individuellen und ihre Seitenunterschiede , 1930 .

[123]  Marzio Gerbella,et al.  Multimodal architectonic subdivision of the rostral part (area F5) of the macaque ventral premotor cortex , 2009, The Journal of comparative neurology.

[124]  Song-Lin Ding,et al.  Parcellation of human temporal polar cortex: A combined analysis of multiple cytoarchitectonic, chemoarchitectonic, and pathological markers , 2009, The Journal of comparative neurology.

[125]  E. Reiman,et al.  Thermosensory activation of insular cortex , 2000, Nature Neuroscience.

[126]  S. Clarke,et al.  Occipital cortex in man: Organization of callosal connections, related myelo‐ and cytoarchitecture, and putative boundaries of functional visual areas , 1990, The Journal of comparative neurology.

[127]  G. Orban,et al.  Observing Others: Multiple Action Representation in the Frontal Lobe , 2005, Science.

[128]  Katrin Amunts,et al.  Outstanding language competence and cytoarchitecture in Broca’s speech region , 2004, Brain and Language.

[129]  T. Schormann,et al.  Functional delineation of the human occipito-temporal areas related to face and scene processing. A PET study. , 2000, Brain : a journal of neurology.

[130]  K. Amunts,et al.  Probabilistic maps, morphometry, and variability of cytoarchitectonic areas in the human superior parietal cortex. , 2008, Cerebral cortex.

[131]  P. Goldman-Rakic,et al.  Connections of the ventral granular frontal cortex of macaques with perisylvian premotor and somatosensory areas: Anatomical evidence for somatic representation in primate frontal association cortex , 1989, The Journal of comparative neurology.

[132]  K. Amunts,et al.  Cytoarchitectonic mapping of the human amygdala, hippocampal region and entorhinal cortex: intersubject variability and probability maps , 2005, Anatomy and Embryology.

[133]  D. J. Felleman,et al.  Distributed hierarchical processing in the primate cerebral cortex. , 1991, Cerebral cortex.

[134]  K. Zilles,et al.  Neural activity in human primary motor cortex areas 4a and 4p is modulated differentially by attention to action. , 2002, Journal of neurophysiology.

[135]  S. Clarke,et al.  Cytochrome Oxidase, Acetylcholinesterase, and NADPH-Diaphorase Staining in Human Supratemporal and Insular Cortex: Evidence for Multiple Auditory Areas , 1997, NeuroImage.

[136]  R. Pigache The anatomy of "paleocortex". A critical review. , 1970, Ergebnisse der Anatomie und Entwicklungsgeschichte.

[137]  Elia Formisano,et al.  An anatomical and functional topography of human auditory cortical areas , 2014, Front. Neurosci..

[138]  Karl Zilles,et al.  ANATOMICAL ORGANIZATION OF THE HUMAN AUDITORY CORTEX: CYTOARCHITECTURE AND TRANSMITTER RECEPTORS , 2005 .

[139]  Prof. Dr. Heiko Braak,et al.  Architectonics of the Human Telencephalic Cortex , 1980, Studies of Brain Function.

[140]  Katrin Amunts,et al.  Cortical Folding Patterns and Predicting Cytoarchitecture , 2007, Cerebral cortex.

[141]  Mark Jenkinson,et al.  Correspondences between retinotopic areas and myelin maps in human visual cortex , 2014, NeuroImage.

[142]  Nicola Palomero-Gallagher,et al.  Transmitter receptors reveal segregation of cortical areas in the human superior parietal cortex: Relations to visual and somatosensory regions , 2005, NeuroImage.

[143]  N Palomero-Gallagher,et al.  Receptor autoradiographic mapping of the mesial motor and premotor cortex of the macaque monkey , 1998, The Journal of comparative neurology.

[144]  M. Mesulam,et al.  The Insula of Reil in Man and Monkey , 1985 .

[145]  K. Amunts,et al.  Centenary of Brodmann's Map — Conception and Fate , 2022 .

[146]  L. Werner,et al.  [Types of neurons in the visual cortex of the rat, identified in Nissl- and deimpregnated Golgi preparations]. , 1985, Journal fur Hirnforschung.

[147]  Steen Moeller,et al.  The Human Connectome Project: A data acquisition perspective , 2012, NeuroImage.

[148]  K. Amunts,et al.  Human V5/MT+: comparison of functional and cytoarchitectonic data , 2005, Anatomy and Embryology.

[149]  A. Schleicher,et al.  Cytoarchitectonical analysis and probabilistic mapping of two extrastriate areas of the human posterior fusiform gyrus , 2012, Brain Structure and Function.

[150]  J. Kaas,et al.  Distinctive compartmental organization of human primary visual cortex. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[151]  L. Werner,et al.  [Classification of neurons in the visual cortex of the guinea pig (Cavia porcellus). A combined Golgi-Nissl study using deimpregnation technics]. , 1986, Journal fur Hirnforschung.

[152]  G. Rizzolatti,et al.  The organization of the cortical motor system: new concepts. , 1998, Electroencephalography and clinical neurophysiology.

[153]  A. Palmer,et al.  Histochemical identification of cortical areas in the auditory region of the human brain , 2002, Experimental Brain Research.

[154]  S. Clarke,et al.  Modular Organization of Human Extrastriate Visual Cortex: Evidence from Cytochrome Oxidase Pattern in Normal and Macular Degeneration Cases , 1994, The European journal of neuroscience.

[155]  G. Rizzolatti,et al.  Corticocortical connections of area F3 (SMA‐proper) and area F6 (pre‐SMA) in the macaque monkey , 1993, The Journal of comparative neurology.

[156]  N. Kanwisher,et al.  The lateral occipital complex and its role in object recognition , 2001, Vision Research.

[157]  Katrin Amunts,et al.  Cytoarchitecture and probabilistic maps of the human posterior insular cortex. , 2010, Cerebral cortex.

[158]  Bernard Mazoyer,et al.  Word and non-word reading: What role for the Visual Word Form Area? , 2005, NeuroImage.

[159]  Katrin Amunts,et al.  Architecture of the Cerebral Cortex , 2012 .

[160]  N. Geschwind,et al.  Right-left asymmetrics in the brain. , 1978, Science.

[161]  Leslie G. Ungerleider,et al.  ‘What’ and ‘where’ in the human brain , 1994, Current Opinion in Neurobiology.

[162]  Simon B Eickhoff,et al.  Organizational principles of human visual cortex revealed by receptor mapping. , 2008, Cerebral cortex.

[163]  R. Tootell,et al.  Where is 'dorsal V4' in human visual cortex? Retinotopic, topographic and functional evidence. , 2001, Cerebral cortex.