A 3D Map of the Human Genome at Kilobase Resolution Reveals Principles of Chromatin Looping

[1]  Giacomo Cavalli,et al.  Chromatin-driven behavior of topologically associating domains. , 2015, Journal of molecular biology.

[2]  Michael Q. Zhang,et al.  Genome-wide map of regulatory interactions in the human genome , 2014, Genome research.

[3]  William Stafford Noble,et al.  Statistical confidence estimation for Hi-C data reveals regulatory chromatin contacts , 2014, Genome research.

[4]  Yan Li,et al.  A high-resolution map of three-dimensional chromatin interactome in human cells , 2013, Nature.

[5]  Azedine Zoufir,et al.  Human Genome Replication Proceeds through Four Chromatin States , 2013, PLoS Comput. Biol..

[6]  A. Tanay,et al.  Single cell Hi-C reveals cell-to-cell variability in chromosome structure , 2013, Nature.

[7]  Wendy A Bickmore,et al.  The spatial organization of the human genome. , 2013, Annual review of genomics and human genetics.

[8]  G. Bejerano,et al.  Enhancers: five essential questions , 2013, Nature Reviews Genetics.

[9]  Sergey V. Razin,et al.  Disclosure of a structural milieu for the proximity ligation reveals the elusive nature of an active chromatin hub , 2013, Nucleic acids research.

[10]  William Stafford Noble,et al.  Integrative annotation of chromatin elements from ENCODE data , 2012, Nucleic acids research.

[11]  Jean-Marie Rouillard,et al.  Versatile design and synthesis platform for visualizing genomes with Oligopaint FISH probes , 2012, Proceedings of the National Academy of Sciences.

[12]  Ming Hu,et al.  HiCNorm: removing biases in Hi-C data via Poisson regression , 2012, Bioinform..

[13]  Judith B. Zaugg,et al.  Gene Loops Enhance Transcriptional Directionality , 2012, Science.

[14]  Kenny Q. Ye,et al.  An integrated map of genetic variation from 1,092 human genomes , 2012, Nature.

[15]  B. Chadwick,et al.  The macrosatellite DXZ4 mediates CTCF-dependent long-range intrachromosomal interactions on the human inactive X chromosome. , 2012, Human molecular genetics.

[16]  Vivek Chandra,et al.  Global changes in nuclear positioning of genes and intra- and inter-domain genomic interactions that orchestrate B cell fate , 2012, Nature Immunology.

[17]  Data production leads,et al.  An integrated encyclopedia of DNA elements in the human genome , 2012 .

[18]  J. Dekker,et al.  The long-range interaction landscape of gene promoters , 2012, Nature.

[19]  L. Mirny,et al.  Iterative Correction of Hi-C Data Reveals Hallmarks of Chromosome Organization , 2012, Nature Methods.

[20]  Romain Koszul,et al.  Normalization of a chromosomal contact map , 2012, BMC Genomics.

[21]  ENCODEConsortium,et al.  An Integrated Encyclopedia of DNA Elements in the Human Genome , 2012, Nature.

[22]  J. Sedat,et al.  Spatial partitioning of the regulatory landscape of the X-inactivation centre , 2012, Nature.

[23]  Jesse R. Dixon,et al.  Topological Domains in Mammalian Genomes Identified by Analysis of Chromatin Interactions , 2012, Nature.

[24]  A. Tanay,et al.  Three-Dimensional Folding and Functional Organization Principles of the Drosophila Genome , 2012, Cell.

[25]  Raymond K. Auerbach,et al.  Extensive Promoter-Centered Chromatin Interactions Provide a Topological Basis for Transcription Regulation , 2012, Cell.

[26]  Michael D. Wilson,et al.  Waves of Retrotransposon Expansion Remodel Genome Organization and CTCF Binding in Multiple Mammalian Lineages , 2012, Cell.

[27]  Reza Kalhor,et al.  Genome architectures revealed by tethered chromosome conformation capture and population-based modeling , 2011, Nature Biotechnology.

[28]  A. Tanay,et al.  Probabilistic modeling of Hi-C contact maps eliminates systematic biases to characterize global chromosomal architecture , 2011, Nature Genetics.

[29]  G. Pfeifer,et al.  Relationship between Gene Body DNA Methylation and Intragenic H3K9me3 and H3K36me3 Chromatin Marks , 2011, PloS one.

[30]  Raymond K. Auerbach,et al.  A User's Guide to the Encyclopedia of DNA Elements (ENCODE) , 2011, PLoS biology.

[31]  M. DePristo,et al.  The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. , 2010, Genome research.

[32]  G. Coetzee,et al.  8q24 prostate, breast, and colon cancer risk loci show tissue-specific long-range interaction with MYC , 2010, Proceedings of the National Academy of Sciences.

[33]  Richard Durbin,et al.  Fast and accurate long-read alignment with Burrows–Wheeler transform , 2010, Bioinform..

[34]  I. Amit,et al.  Comprehensive mapping of long range interactions reveals folding principles of the human genome , 2011 .

[35]  E. Liu,et al.  An Oestrogen Receptor α-bound Human Chromatin Interactome , 2009, Nature.

[36]  V. Corces,et al.  CTCF: Master Weaver of the Genome , 2009, Cell.

[37]  Richard Durbin,et al.  Sequence analysis Fast and accurate short read alignment with Burrows – Wheeler transform , 2009 .

[38]  H. Tanabe,et al.  Chromosomal dynamics at the Shh locus: limb bud-specific differential regulation of competence and active transcription. , 2009, Developmental cell.

[39]  Dustin E. Schones,et al.  Global analysis of the insulator binding protein CTCF in chromatin barrier regions reveals demarcation of active and repressive domains. , 2008, Genome research.

[40]  Chunhui Hou,et al.  CTCF-dependent enhancer-blocking by alternative chromatin loop formation , 2008, Proceedings of the National Academy of Sciences.

[41]  E. Liu,et al.  Evolution of the mammalian transcription factor binding repertoire via transposable elements. , 2008, Genome research.

[42]  B. Chadwick,et al.  DXZ4 chromatin adopts an opposing conformation to that of the surrounding chromosome and acquires a novel inactive X-specific role involving CTCF and antisense transcripts. , 2008, Genome research.

[43]  Elizabeth Kerr,et al.  Recruitment to the Nuclear Periphery Can Alter Expression of Genes in Human Cells , 2008, PLoS genetics.

[44]  Daniel Ruiz,et al.  A Fast Algorithm for Matrix Balancing , 2013, Web Information Retrieval and Linear Algebra Algorithms.

[45]  Peter Fraser,et al.  Gene regulation through nuclear organization , 2007, Nature Structural &Molecular Biology.

[46]  Dustin E. Schones,et al.  High-Resolution Profiling of Histone Methylations in the Human Genome , 2007, Cell.

[47]  T. Mikkelsen,et al.  Systematic discovery of regulatory motifs in conserved regions of the human genome, including thousands of CTCF insulator sites , 2007, Proceedings of the National Academy of Sciences.

[48]  Michael Q. Zhang,et al.  Analysis of the Vertebrate Insulator Protein CTCF-Binding Sites in the Human Genome , 2007, Cell.

[49]  Ben Abbas,et al.  Human heterochromatin proteins form large domains containing KRAB-ZNF genes. , 2006, Genome research.

[50]  C. Nusbaum,et al.  Chromosome Conformation Capture Carbon Copy (5C): a massively parallel solution for mapping interactions between genomic elements. , 2006, Genome research.

[51]  Wouter de Laat,et al.  CTCF mediates long-range chromatin looping and local histone modification in the beta-globin locus. , 2006, Genes & development.

[52]  G. Felsenfeld,et al.  Insulators: exploiting transcriptional and epigenetic mechanisms , 2006, Nature Reviews Genetics.

[53]  Rolf Ohlsson,et al.  CTCF binding at the H19 imprinting control region mediates maternally inherited higher-order chromatin conformation to restrict enhancer access to Igf2. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[54]  Richard A Flavell,et al.  Long-range intrachromosomal interactions in the T helper type 2 cytokine locus , 2004, Nature Immunology.

[55]  Antonin Morillon,et al.  Gene loops juxtapose promoters and terminators in yeast , 2004, Nature Genetics.

[56]  Wolf Reik,et al.  Interaction between differentially methylated regions partitions the imprinted genes Igf2 and H19 into parent-specific chromatin loops , 2004, Nature Genetics.

[57]  G. Felsenfeld,et al.  The 5'-HS4 chicken beta-globin insulator is a CTCF-dependent nuclear matrix-associated element. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[58]  G. Felsenfeld,et al.  CTCF tethers an insulator to subnuclear sites, suggesting shared insulator mechanisms across species. , 2004, Molecular cell.

[59]  Helen Zhao,et al.  The insulator binding protein CTCF associates with the nuclear matrix. , 2003, Experimental cell research.

[60]  Erik Splinter,et al.  Looping and interaction between hypersensitive sites in the active beta-globin locus. , 2002, Molecular cell.

[61]  J. Dekker,et al.  Capturing Chromosome Conformation , 2002, Science.

[62]  T. Cremer,et al.  Chromosome territories, nuclear architecture and gene regulation in mammalian cells , 2001, Nature Reviews Genetics.

[63]  V. Corces,et al.  A chromatin insulator determines the nuclear localization of DNA. , 2000, Molecular cell.

[64]  J. T. Kadonaga,et al.  Going the distance: a current view of enhancer action. , 1998, Science.

[65]  A. Vostrov,et al.  The zinc finger protein CTCF binds to the APBbeta domain of the amyloid beta-protein precursor promoter. Evidence for a role in transcriptional activation. , 1997, The Journal of biological chemistry.

[66]  P. Neiman,et al.  An exceptionally conserved transcriptional repressor, CTCF, employs different combinations of zinc fingers to bind diverged promoter sequences of avian and mammalian c-myc oncogenes , 1996, Molecular and cellular biology.

[67]  P. Neiman,et al.  CTCF, a conserved nuclear factor required for optimal transcriptional activity of the chicken c-myc gene, is an 11-Zn-finger protein differentially expressed in multiple forms , 1993, Molecular and cellular biology.

[68]  R. Renkawitz,et al.  NeP1. A ubiquitous transcription factor synergizes with v-ERBA in transcriptional silencing. , 1993, Journal of molecular biology.

[69]  M. Kladde,et al.  Interaction between transcription regulatory regions of prolactin chromatin. , 1993, Science.

[70]  Victor V Lobanenkov,et al.  A novel sequence-specific DNA binding protein which interacts with three regularly spaced direct repeats of the CCCTC-motif in the 5'-flanking sequence of the chicken c-myc gene. , 1990, Oncogene.

[71]  B. Müller-Hill,et al.  The three operators of the lac operon cooperate in repression. , 1990, The EMBO journal.

[72]  Sunil Mukherjee,et al.  Enhancer-origin interaction in plasmid R6K involves a DNA loop mediated by initiator protein , 1988, Cell.

[73]  R. Schleif,et al.  DNA looping. , 1988, Science.

[74]  B. Müller-Hill,et al.  Specific destruction of the second lac operator decreases repression of the lac operon in Escherichia coli fivefold. , 1987, Journal of molecular biology.

[75]  B. Müller-Hill,et al.  lac repressor forms loops with linear DNA carrying two suitably spaced lac operators. , 1987, The EMBO journal.

[76]  Mark Ptashne,et al.  DNA loops induced by cooperative binding of λ repressor , 1986, Nature.

[77]  Mark Ptashne,et al.  Gene regulation by proteins acting nearby and at a distance , 1986, Nature.

[78]  B. Vogelstein,et al.  Supercoiled loops and the organization of replication and transcription in eukaryotes , 1985 .

[79]  T. Dunn,et al.  An operator at -280 base pairs that is required for repression of araBAD operon promoter: addition of DNA helical turns between the operator and promoter cyclically hinders repression. , 1984, Proceedings of the National Academy of Sciences of the United States of America.

[80]  J. Banerji,et al.  Expression of a β-globin gene is enhanced by remote SV40 DNA sequences , 1981, Cell.

[81]  J. Banerji,et al.  Expression of a beta-globin gene is enhanced by remote SV40 DNA sequences. , 1981, Cell.

[82]  B. Vogelstein,et al.  Supercoiled loops and eucaryotic DNA replication , 1980, Cell.

[83]  P. Cook,et al.  Supercoils in human DNA. , 1975, Journal of cell science.