Stochastic Mixed-Integer Programming

In this chapter we consider a generalization of the recourse model in Chap. 3, obtained by allowing integrality restrictions on some or all of the decision variables. First we give some motivation why such mixed-integer recourse models are useful and interesting. Following the presentation of the general model, we give several examples of applications. Next we discuss mathematical properties of the general model as well as the so-called simple integer recourse model, which is the analogue of the continuous simple recourse model discussed in Sect. 3.3.2. We conclude this chapter with an overview of available algorithms.

[1]  Maarten Hendrikus van der Vlerk Stochastic programming with integer recourse , 1995 .

[2]  Jørgen Tind,et al.  L-shaped decomposition of two-stage stochastic programs with integer recourse , 1998, Math. Program..

[3]  Leen Stougie,et al.  An algorithm for the construction of convex hulls in simple integer recourse programming , 1996, Ann. Oper. Res..

[4]  Maarten H. van der Vlerk,et al.  Convex Approximations for Totally Unimodular Integer Recourse Models: A Uniform Error Bound , 2015, SIAM J. Optim..

[5]  R. Schultz,et al.  Solving stochastic programs with integer recourse by enumeration: a framework using Gro¨bner basis reductions , 1998 .

[6]  Rüdiger Schultz Continuity and Stability in Two-Stage Stochastic Integer Programming , 1992 .

[7]  Leen Stougie,et al.  Simple integer recourse models: convexity and convex approximations , 2006, Math. Program..

[8]  Rüdiger Schultz Continuity Properties of Expectation Functions in Stochastic Integer Programming , 1993, Math. Oper. Res..

[9]  Laurence A. Wolsey,et al.  Integer and Combinatorial Optimization , 1988 .

[10]  Robert R. Meyer,et al.  On the existence of optimal solutions to integer and mixed-integer programming problems , 1974, Math. Program..

[11]  Richard D. Wollmer,et al.  Two stage linear programming under uncertainty with 0–1 integer first stage variables , 1980, Math. Program..

[12]  Laurence A. Wolsey,et al.  Integer and Combinatorial Optimization , 1988, Wiley interscience series in discrete mathematics and optimization.

[13]  Maarten H. van der Vlerk,et al.  Total variation bounds on the expectation of periodic functions with applications to recourse approximations , 2016, Math. Program..

[14]  R. Wets,et al.  L-SHAPED LINEAR PROGRAMS WITH APPLICATIONS TO OPTIMAL CONTROL AND STOCHASTIC PROGRAMMING. , 1969 .

[15]  Rüdiger Schultz,et al.  Dual decomposition in stochastic integer programming , 1999, Oper. Res. Lett..

[16]  Ronald L. Graham,et al.  An Efficient Algorithm for Determining the Convex Hull of a Finite Planar Set , 1972, Inf. Process. Lett..

[17]  Maarten H. van der Vlerk,et al.  Convex approximations for complete integer recourse models , 2004, Math. Program..

[18]  Rüdiger Schultz On structure and stability in stochastic programs with random technology matrix and complete integer recourse , 1995, Math. Program..

[19]  Leen Stougie,et al.  On the Convex Hull of the Composition of a Separable and a Linear Function , 1995 .

[20]  Gilbert Laporte,et al.  The integer L-shaped method for stochastic integer programs with complete recourse , 1993, Oper. Res. Lett..

[21]  Alexander Schrijver,et al.  Theory of linear and integer programming , 1986, Wiley-Interscience series in discrete mathematics and optimization.

[22]  Maarten H. van der Vlerk,et al.  Stochastic integer programming:General models and algorithms , 1999, Ann. Oper. Res..

[23]  Leen Stougie,et al.  Solving stochastic programs with integer recourse by enumeration: A framework using Gröbner basis , 1995, Math. Program..