Stochastic Mixed-Integer Programming
暂无分享,去创建一个
Maarten H. van der Vlerk | Willem K. Klein Haneveld | Ward Romeijnders | W. K. Haneveld | Ward Romeijnders | M. V. D. Vlerk
[1] Maarten Hendrikus van der Vlerk. Stochastic programming with integer recourse , 1995 .
[2] Jørgen Tind,et al. L-shaped decomposition of two-stage stochastic programs with integer recourse , 1998, Math. Program..
[3] Leen Stougie,et al. An algorithm for the construction of convex hulls in simple integer recourse programming , 1996, Ann. Oper. Res..
[4] Maarten H. van der Vlerk,et al. Convex Approximations for Totally Unimodular Integer Recourse Models: A Uniform Error Bound , 2015, SIAM J. Optim..
[5] R. Schultz,et al. Solving stochastic programs with integer recourse by enumeration: a framework using Gro¨bner basis reductions , 1998 .
[6] Rüdiger Schultz. Continuity and Stability in Two-Stage Stochastic Integer Programming , 1992 .
[7] Leen Stougie,et al. Simple integer recourse models: convexity and convex approximations , 2006, Math. Program..
[8] Rüdiger Schultz. Continuity Properties of Expectation Functions in Stochastic Integer Programming , 1993, Math. Oper. Res..
[9] Laurence A. Wolsey,et al. Integer and Combinatorial Optimization , 1988 .
[10] Robert R. Meyer,et al. On the existence of optimal solutions to integer and mixed-integer programming problems , 1974, Math. Program..
[11] Richard D. Wollmer,et al. Two stage linear programming under uncertainty with 0–1 integer first stage variables , 1980, Math. Program..
[12] Laurence A. Wolsey,et al. Integer and Combinatorial Optimization , 1988, Wiley interscience series in discrete mathematics and optimization.
[13] Maarten H. van der Vlerk,et al. Total variation bounds on the expectation of periodic functions with applications to recourse approximations , 2016, Math. Program..
[14] R. Wets,et al. L-SHAPED LINEAR PROGRAMS WITH APPLICATIONS TO OPTIMAL CONTROL AND STOCHASTIC PROGRAMMING. , 1969 .
[15] Rüdiger Schultz,et al. Dual decomposition in stochastic integer programming , 1999, Oper. Res. Lett..
[16] Ronald L. Graham,et al. An Efficient Algorithm for Determining the Convex Hull of a Finite Planar Set , 1972, Inf. Process. Lett..
[17] Maarten H. van der Vlerk,et al. Convex approximations for complete integer recourse models , 2004, Math. Program..
[18] Rüdiger Schultz. On structure and stability in stochastic programs with random technology matrix and complete integer recourse , 1995, Math. Program..
[19] Leen Stougie,et al. On the Convex Hull of the Composition of a Separable and a Linear Function , 1995 .
[20] Gilbert Laporte,et al. The integer L-shaped method for stochastic integer programs with complete recourse , 1993, Oper. Res. Lett..
[21] Alexander Schrijver,et al. Theory of linear and integer programming , 1986, Wiley-Interscience series in discrete mathematics and optimization.
[22] Maarten H. van der Vlerk,et al. Stochastic integer programming:General models and algorithms , 1999, Ann. Oper. Res..
[23] Leen Stougie,et al. Solving stochastic programs with integer recourse by enumeration: A framework using Gröbner basis , 1995, Math. Program..