Lanthanum nickel oxide nano-perovskite decorated carbon nanotubes/poly(aniline) composite for effective electrochemical oxidation of urea

[1]  A. Galal,et al.  Effect of B-site doping on Sr2PdO3 perovskite catalyst activity for non-enzymatic determination of glucose in biological fluids , 2019, Journal of Electroanalytical Chemistry.

[2]  Y. Li,et al.  Atomically thick Ni(OH)2 nanomeshes for urea electrooxidation. , 2019, Nanoscale.

[3]  A. Galal,et al.  Nano-magnetite/ionic liquid crystal modifiers of carbon nanotubes composite electrode for ultrasensitive determination of a new anti-hepatitis C drug in human serum , 2018 .

[4]  A. Schechter,et al.  Electrochemical investigation of urea oxidation reaction on β Ni(OH)2 and Ni/Ni(OH)2 , 2018, Electrochimica Acta.

[5]  Hagar K. Hassan,et al.  Effect of Redox Electrolyte on the Specific Capacitance of SrRuO3–Reduced Graphene Oxide Nanocomposites , 2018 .

[6]  A. Galal,et al.  Nano-perovskite decorated carbon nanotubes composite for ultrasensitive determination of a cardio-stimulator drug , 2018 .

[7]  Hagar K. Hassan,et al.  Conducting Polymer-Mixed Oxide Composite Electrocatalyst for Enhanced Urea Oxidation , 2018 .

[8]  K. Gobi,et al.  Pd nanoparticles-embedded carbon nanotube interface for electrocatalytic oxidation of methanol toward DMFC applications , 2018, Clean Technologies and Environmental Policy.

[9]  Z. Lei,et al.  Ni 5 Sm-P/C ternary alloyed catalyst as highly efficient electrocatalyst for urea electrooxidation , 2017 .

[10]  Long Qu,et al.  Monodisperse nickel nanoparticles supported on multi-walls carbon nanotubes as an effective catalyst for the electro-oxidation of urea , 2017 .

[11]  A. Schechter,et al.  Enhanced Urea Activity of Oxidation on Nickel‐Deposited Tin Dendrites , 2017 .

[12]  William G. Hardin,et al.  Nanostructured LaNiO3 Perovskite Electrocatalyst for Enhanced Urea Oxidation , 2016 .

[13]  Y. Liu,et al.  A facile preparation of CoFe2O4 nanoparticles on polyaniline-functionalised carbon nanotubes as enhanced catalysts for the oxygen evolution reaction , 2016 .

[14]  Paul Meredith,et al.  Organohalide Perovskites for Solar Energy Conversion. , 2016, Accounts of chemical research.

[15]  Ekram H. El-Ads,et al.  The effect of A-site doping in a strontium palladium perovskite and its applications for non-enzymatic glucose sensing , 2016 .

[16]  Yinyi Gao,et al.  Nickel nanowire arrays electrode as an efficient catalyst for urea peroxide electro-oxidation in alkaline media , 2016 .

[17]  M. El-Newehy,et al.  Ni&Mn nanoparticles-decorated carbon nanofibers as effective electrocatalyst for urea oxidation , 2016 .

[18]  W. Simka,et al.  Electrocatalytic oxidation of urea on a sintered Ni–Pt electrode , 2016, Journal of Applied Electrochemistry.

[19]  Longtu Li,et al.  BaTiO3–BiYbO3 perovskite materials for energy storage applications , 2015 .

[20]  Ekram H. El-Ads,et al.  Electrochemistry of glucose at gold nanoparticles modified graphite/SrPdO3 electrode – Towards a novel non-enzymatic glucose sensor , 2015 .

[21]  K. Ye,et al.  Highly porous nickel@carbon sponge as a novel type of three-dimensional anode with low cost for high catalytic performance of urea electro-oxidation in alkaline medium , 2015 .

[22]  Mingtao Li,et al.  Enhanced activity of urea electrooxidation on nickel catalysts supported on tungsten carbides/carbon nanotubes , 2015 .

[23]  Xuping Sun,et al.  Enhanced electrooxidation of urea using NiMoO4·xH2O nanosheet arrays on Ni foam as anode , 2015 .

[24]  Mao-Sung Wu,et al.  Hydrothermal growth of vertically-aligned ordered mesoporous nickel oxide nanosheets on three-dimensional nickel framework for electrocatalytic oxidation of urea in alkaline medium , 2014 .

[25]  Chunhai Yi,et al.  Ni–WC/C nanocluster catalysts for urea electrooxidation , 2014 .

[26]  Yuanhua Lin,et al.  Nanoporous TiO2/polyaniline composite films with enhanced photoelectrochemical properties , 2014 .

[27]  G. Botte,et al.  Nickel nanowires as effective catalysts for urea electro-oxidation , 2014 .

[28]  Hongyu Wang,et al.  Facile synthesis of mesoporous spinel NiCo₂O₄ nanostructures as highly efficient electrocatalysts for urea electro-oxidation. , 2014, Nanoscale.

[29]  G. Botte,et al.  Understanding the electro-catalytic oxidation mechanism of urea on nickel electrodes in alkaline medium , 2012 .

[30]  G. Botte,et al.  Electrochemical Decomposition of Urea with Ni-Based Catalysts , 2012 .

[31]  Yu Lin,et al.  The effect of Pd content in LaMnO3 for methanol partial oxidation , 2011 .

[32]  Hailei Zhao,et al.  Lattice characteristics, structure stability and oxygen permeability of BaFe1−xYxO3−δ ceramic membranes , 2011 .

[33]  K. Pandian,et al.  Single pot synthesis of polyaniline protected silver nanoparticles by interfacial polymerization and study its application on electrochemical oxidation of hydrazine , 2011 .

[34]  Yansong Bai,et al.  Carbon nanotubes-supported PtAu-alloy nanoparticles for electro-oxidation of formic acid with remarkable activity , 2011 .

[35]  N. O’Driscoll,et al.  Suspension of Multi-Walled Carbon Nanotubes (CNTs) in Freshwaters: Examining the Effect of CNT Size , 2010 .

[36]  Changhong Liu,et al.  Flexible carbon nanotube/polyaniline paper-like films and their enhanced electrochemical properties , 2009 .

[37]  Masatsugu Oishi,et al.  Oxygen nonstoichiometry and defect structure analysis of B-site mixed perovskite-type oxide (La, Sr)(Cr, M)O3−δ (M=Ti, Mn and Fe) , 2008 .

[38]  S. D. Torresi,et al.  Electrocatalytic oxidation of urea by nanostructured nickel/cobalt hydroxide electrodes , 2008 .

[39]  Z. Hao,et al.  Hydrogen production from a combination of the water-gas shift and redox cycle process of methane partial oxidation via lattice oxygen over LaFeO3 perovskite catalyst. , 2006, The journal of physical chemistry. B.

[40]  L. Nie,et al.  Deposition and electrocatalytic properties of platinum on well-aligned carbon nanotube (CNT) arrays for methanol oxidation , 2005 .

[41]  K. Sun,et al.  Formation of single-layered Au nanoparticles in Au ion implanted TiO2 and SrTiO3 , 2004 .

[42]  B. Pešić,et al.  Electrodeposition of copper: the nucleation mechanisms , 2002 .

[43]  F. G. Lether,et al.  An algorithm for the numerical evaluation of the reversible Randles-Sevcik function , 1987, Comput. Chem..

[44]  Rodney L. LeRoy,et al.  Relation between Arrhenius activation energies and excitation functions , 1969 .