On the Regularity Condition for Vector Programming Problems

In this work, we use a notion of approximation derived from Jourani and Thibault [13] to ascertain optimality conditions analogous to those that established but applicable to larger class of vector valued objective mappings and constraint set-valued mappings. To this end, we introduce an appropriate regularity condition to help us discern the Karush-Kuhn-Tucker multipliers.

[1]  Anthony V. Fiacco,et al.  Nonlinear programming;: Sequential unconstrained minimization techniques , 1968 .

[2]  I. Ekeland On the variational principle , 1974 .

[3]  D. T. Luc,et al.  Invex optimisation problems , 1992, Bulletin of the Australian Mathematical Society.

[4]  H. W. Corley,et al.  Optimality conditions for maximizations of set-valued functions , 1988 .

[5]  L. Thibault On subdifferential of optimal value functions , 1991 .

[6]  Abderrahim Jourani,et al.  Approximations and Metric Regularity in Mathematical Programming in Banach Space , 1993, Math. Oper. Res..

[7]  Douglass J. Wilde,et al.  Foundations of Optimization. , 1967 .

[8]  J. Zowe,et al.  Regularity and stability for the mathematical programming problem in Banach spaces , 1979 .

[9]  A. Ioffe Approximate subdifferentials and applications 3: the metric theory , 1989 .

[10]  T. Amahroq,et al.  Second order approximations and dual necessary optimality conditions , 1997 .

[11]  F. Clarke Optimization And Nonsmooth Analysis , 1983 .

[12]  T. Amahroq,et al.  Sufficient conditions of optimality for multiobjective optimization problems with γ-paraconvex data , 1997 .

[13]  Pham Huy Dien,et al.  On the regularity condition for the extremal problem under locally Lipschitz inclusion constraints , 1985 .

[14]  A. Taa,et al.  On Lagrance-Kuhn-Tucker Mulitipliers for Muliobjective Optimization Problems , 1997 .

[15]  B. Mordukhovich,et al.  Nonsmooth sequential analysis in Asplund spaces , 1996 .