Constructions of good entanglement-assisted quantum error correcting codes

Entanglement-assisted quantum error correcting codes (EAQECCs) are a simple and fundamental class of codes. They allow for the construction of quantum codes from classical codes by relaxing the duality condition and using pre-shared entanglement between the sender and receiver. However, in general it is not easy to determine the number of shared pairs required to construct an EAQECC. In this paper, we show that this number is related to the hull of the classical code. Using this fact, we give methods to construct EAQECCs requiring desirable amounts of entanglement. This allows for designing families of EAQECCs with good error performance. Moreover, we construct maximal entanglement EAQECCs from LCD codes. Finally, we prove the existence of asymptotically good EAQECCs in the odd characteristic case.

[1]  Henning Stichtenoth,et al.  Transitive and self-dual codes attaining the Tsfasman-Vla/spl breve/dut$80-Zink bound , 2006, IEEE Transactions on Information Theory.

[2]  Igor Devetak,et al.  Quantum Quasi-Cyclic Low-Density Parity-Check Codes , 2008 .

[3]  Igor Devetak,et al.  Correcting Quantum Errors with Entanglement , 2006, Science.

[4]  Petr Lisonek,et al.  Quantum codes from nearly self-orthogonal quaternary linear codes , 2014, Des. Codes Cryptogr..

[5]  Stefano Marcugini,et al.  The geometry of quantum codes , 2008 .

[6]  Mark M. Wilde,et al.  Duality in Entanglement-Assisted Quantum Error Correction , 2013, IEEE Transactions on Information Theory.

[7]  David Poulin,et al.  Unified and generalized approach to quantum error correction. , 2004, Physical review letters.

[8]  Michael Rosen,et al.  A classical introduction to modern number theory , 1982, Graduate texts in mathematics.

[9]  James L. Massey,et al.  Linear codes with complementary duals , 1992, Discret. Math..

[10]  Henning Stichtenoth Transitive and Self-dual Codes Attaining the Tsfasman-Vladut-Zink Bound , 2005 .

[11]  Igor Devetak,et al.  Catalytic Quantum Error Correction , 2014, IEEE Transactions on Information Theory.

[12]  A. Calderbank,et al.  Quantum Error Correction and Orthogonal Geometry , 1996, quant-ph/9605005.

[13]  Tao Zhang,et al.  Quantum Codes from Generalized Reed-Solomon Codes and Matrix-Product Codes , 2015, ArXiv.

[14]  Markus Grassl,et al.  The Weights in MDS Codes , 2009, IEEE Transactions on Information Theory.

[15]  James L. Massey,et al.  The Necessary and Sufficient Condition for a Cyclic Code to Have a Complementary Dual , 1999 .

[16]  Xiang Yang,et al.  The condition for a cyclic code to have a complementary dual , 1994, Discret. Math..

[17]  Hanwu Chen,et al.  Constructions of q-ary entanglement-assisted quantum MDS codes with minimum distance greater than q+1 , 2016, Quantum Inf. Comput..

[18]  Chaoping Xing,et al.  Application of Classical Hermitian Self-Orthogonal MDS Codes to Quantum MDS Codes , 2010, IEEE Transactions on Information Theory.

[19]  G. Hardy,et al.  An Introduction to the Theory of Numbers , 1938 .

[20]  Daniele Bartoli,et al.  The structure of quaternary quantum caps , 2014, Des. Codes Cryptogr..

[21]  I. Devetak,et al.  General entanglement-assisted quantum error-correcting codes , 2007, 2007 IEEE International Symposium on Information Theory.

[22]  Vladimir D. Tonchev,et al.  Entanglement-assisted quantum low-density parity-check codes , 2010, ArXiv.

[23]  Lina Zhang,et al.  Entanglement-assisted quantum codes from arbitrary binary linear codes , 2014, Designs, Codes and Cryptography.

[24]  A. Steane Multiple-particle interference and quantum error correction , 1996, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[25]  T. Brun,et al.  Optimal entanglement formulas for entanglement-assisted quantum coding , 2008, 0804.1404.