Runge–Kutta Methods for Ordinary Differential Equations
暂无分享,去创建一个
[1] J. M. Sanz-Serna,et al. Runge-kutta schemes for Hamiltonian systems , 1988 .
[2] S. Gill,et al. A process for the step-by-step integration of differential equations in an automatic digital computing machine , 1951, Mathematical Proceedings of the Cambridge Philosophical Society.
[3] John C. Butcher,et al. On the attainable order of Runge-Kutta methods , 1965 .
[4] E. Hairer,et al. Geometric Numerical Integration: Structure Preserving Algorithms for Ordinary Differential Equations , 2004 .
[5] John C. Butcher,et al. An algebraic theory of integration methods , 1972 .
[6] John C. Butcher. The cohesiveness of G-symplectic methods , 2015, Numerical Algorithms.
[7] C. Runge. Ueber die numerische Auflösung von Differentialgleichungen , 1895 .
[8] John C. Butcher,et al. A generalization of singly-implicit Runge-Kutta methods , 1997 .
[9] John C. Butcher,et al. Towards efficient Runge-Kutta methods for stiff systems , 1990 .
[10] W. Kutta. Beitrag zur Naherungsweisen Integration Totaler Differentialgleichungen , 1901 .
[11] S. Osher,et al. Efficient implementation of essentially non-oscillatory shock-capturing schemes,II , 1989 .
[12] Chi-Wang Shu. Total-variation-diminishing time discretizations , 1988 .
[13] J. C. Butcher,et al. Dealing with Parasitic Behaviour in G-Symplectic Integrators , 2013 .
[14] J. Butcher. Coefficients for the study of Runge-Kutta integration processes , 1963, Journal of the Australian Mathematical Society.
[15] The Control of Parasitism in G-symplectic Methods , 2014, SIAM J. Numer. Anal..
[16] R. Alexander. Diagonally implicit runge-kutta methods for stiff odes , 1977 .
[17] David I. Ketcheson,et al. Strong stability preserving runge-kutta and multistep time discretizations , 2011 .