Interfacial structure of InAs/Ga1−xInxSb superlattices

The interfacial structure of InAs/Ga1−xInxSb superlattices is investigated by high-resolution transmission electron microscopy imaging. We have shown that high-resolution electron microscopy with quantitative image matching can enable the relative orientation of the closely separated atomic species in InAs and Ga1−xInxSb to be resolved. We have then used this capability to determine interfacial bonds. The shift in the atomic positions associated with this modulation may lead to distortions of the interfacial structure of Ga1−xInxAs-like. The misfit dislocations in InSb-like interface are the primary mechanism for accommodating the lattice mismatch.

[1]  Achim Trampert,et al.  Interface analysis of InAs/GaSb superlattice grown by MBE , 2007 .

[2]  M. Čeh,et al.  Determination of thickness and lattice distortion for the individual layer of strained Al0.14Ga0.86N∕GaN superlattice by high-angle annular dark-field scanning transmission electron microscopy , 2005 .

[3]  Jeffrey N. Stirman,et al.  Atomic-scale imaging of asymmetric Lomer dislocation cores at the Ge/Si(001) heterointerface , 2004 .

[4]  A. Zunger,et al.  Segregation effects on the optical properties of (InAs)/(GaSb) superlattices , 2002 .

[5]  Ron Kaspi,et al.  As-soak control of the InAs-on-GaSb interface , 2001 .

[6]  M. Razeghi,et al.  Long-wavelength type-II photodiodes operating at room temperature , 2001, IEEE Photonics Technology Letters.

[7]  M. Shaw,et al.  Systematic study of type II Ga1-xInxSb/InAs superlattices for infra-red detection in the 10-12 µm wavelength range , 2001 .

[8]  B. R. Bennett,et al.  Interpreting interfacial structure in cross-sectional STM images of III–V semiconductor heterostructures , 2000 .

[9]  G. Turner,et al.  Visualizing interfacial structure at non-common-atom heterojunctions with cross-sectional scanning tunneling microscopy. , 2000, Physical review letters.

[10]  David Smith,et al.  Polarity determination and atomic arrangements at a GaN/SiC interface using high-resolution image matching , 2000 .

[11]  Qianghua Xie,et al.  Arsenic for antimony exchange on GaSb, its impacts on surface morphology, and interface structure , 1999 .

[12]  E. Yu,et al.  Correlation between atomic-scale structure and mobility anisotropy in superlattices , 1998 .

[13]  Richard H. Miles,et al.  Anisotropy and growth-sequence dependence of atomic-scale interface structure in InAs/Ga1−xInxSb superlattices , 1997 .

[14]  Brian R. Bennett,et al.  Origins of interfacial disorder in GaSb/InAs superlattices , 1995 .

[15]  V. Vítek,et al.  Atomic structure of misfit dislocations in metal-ceramic interfaces , 1995 .

[16]  Jack Davis,et al.  Control of interface stoichiometry in InAs/GaSb superlattices grown by molecular beam epitaxy , 1993 .

[17]  Christian Mailhiot,et al.  Long‐wavelength infrared detectors based on strained InAs–Ga1−xInxSb type‐II superlattices , 1989 .

[18]  Darryl L. Smith,et al.  Proposal for strained type II superlattice infrared detectors , 1987 .

[19]  J. W. Matthews CHAPTER 8 – COHERENT INTERFACES AND MISFIT DISLOCATIONS , 1975 .