Sensitivity and Uncertainty Analysis Capabilities and Data in SCALE

Abstract In SCALE 6, the Tools for Sensitivity and UNcertainty Analysis Methodology Implementation (TSUNAMI) modules calculate the sensitivity of keff or reactivity differences to the neutron cross-section data on an energy-dependent, nuclide-reaction-specific basis. These sensitivity data are useful for uncertainty quantification, using the comprehensive neutron cross-section-covariance data in SCALE 6. Additional modules in SCALE 6 use the sensitivity and uncertainty data to produce correlation coefficients and other relational parameters that quantify the similarity of benchmark experiments to application systems for code validation purposes. Bias and bias uncertainties are quantified using parametric trending analysis or data adjustment techniques, providing detailed assessments of sources of biases and their uncertainties and quantifying gaps in experimental data available for validation. An example application of these methods is presented for a generic burnup credit cask model.

[1]  Bradley T Rearden,et al.  Monte Carlo Criticality Methods and Analysis Capabilities in SCALE , 2011 .

[2]  M. Herman,et al.  ENDF-6 Formats Manual Data Formats and Procedures for the Evaluated Nuclear Data File ENDF/B-VI and ENDF/B-VII Written by the Members of the Cross Sections Evaluation Working Group Last Revision Edited by , 2009 .

[3]  M. Pigni,et al.  Extensive Set of Cross-Section Covariance Estimates in the Fast Neutron Region , 2009 .

[4]  Bradley T Rearden,et al.  Application of the SCALE TSUNAMI Tools for the Validation of Criticality Safety Calculations Involving 233U , 2009 .

[5]  Dorothea Wiarda,et al.  Low-fidelity Covariance Project , 2008 .

[6]  G. Hale Covariances from Light-Element R-Matrix Analyses , 2008 .

[7]  Bradley T Rearden,et al.  SCALE-6 Sensitivity/Uncertainty Methods and Covariance Data , 2008 .

[8]  R. Little,et al.  Evaluation of Covariances for Actinides and Light Elements at LANL , 2008 .

[9]  D. Rochman,et al.  PRELIMINARY CROSS SECTION AND NU-BAR COVARIANCES FOR WPEC SUBGROUP 26 , 2007 .

[10]  Mark L Williams,et al.  Sensitivity and Uncertainty Analysis for Eigenvalue-Difference Responses , 2007 .

[11]  Bradley T Rearden,et al.  Approximate Techniques for Representing Nuclear Data Uncertainties , 2007 .

[12]  J. Gehin,et al.  Sensitivity Analysis of Reactivity Responses Using One-Dimensional Discrete Ordinates and Three-Dimensional Monte Carlo Methods , 2006 .

[13]  N. M. Larson,et al.  A systematic description of the generation of covariance matrices , 2006 .

[14]  Said F. Mughabghab,et al.  Atlas of Neutron Resonances: Resonance Parameters and Thermal Cross Sections. Z=1-100 , 2006 .

[15]  Bradley T Rearden,et al.  Use of Sensitivity and Uncertainty Analysis in the Design of Reactor Physics and Criticality Benchmark Experiments for Advanced Nuclear Fuel , 2005 .

[16]  B. Rearden,et al.  Sensitivity- and Uncertainty-Based Criticality Safety Validation Techniques , 2004 .

[17]  B. Rearden Perturbation Theory Eigenvalue Sensitivity Analysis with Monte Carlo Techniques , 2004 .

[18]  R. Busch,et al.  ANSI/ANS 8.24: Validation of neutron transport methods for nuclear criticality safety calculations (DRAFT) , 2004 .

[19]  B. Broadhead,et al.  The Fission Spectrum Uncertainty , 2004 .

[20]  Brian O. Kidd,et al.  Criticality safety criteria for the handling, storage, and transportation of LWR fuel outside reactors: ANSI/ANS-8.17-1984 (R97) , 2004 .

[21]  K. F. Raskach,et al.  Influence of the Correlations of Experimental Uncertainties on Criticality Prediction , 2003 .

[22]  S. Mughabghab Thermal neutron capture cross sections resonance integrals and g-factors , 2003 .

[23]  John C. Wagner,et al.  Computational Benchmark for Estimation of Reactivity Margin from Fission Products and Minor Actinides in PWR Burnup Credit , 2001 .

[24]  M. Williams,et al.  Eigenvalue Sensitivity Theory for Resonance-Shielded Cross Sections , 2001 .

[25]  M. E. Dunn,et al.  PUFF-III: A Code for Processing ENDF Uncertainty Data Into Multigroup Covariance Matrices , 2000 .

[26]  C. V. Parks,et al.  Recommendations for preparing the criticality safety evaluation of transportation packages , 1997 .

[27]  Stephen M. Bowman,et al.  Criticality benchmark guide for light-water-reactor fuel in transportation and storage packages , 1997 .

[28]  H. K. Clark,et al.  The American national standard for nuclear criticality safety in operations with fissionable materials outside reactors , 1981 .

[29]  Bucholz,et al.  SCALE: a modular code system for performing standardized computer analyses for licensing evaluation , 1981 .

[30]  C. R. Weisbin,et al.  Relative consistency of ENDF/B-IV and -V with fast-reactor benchmarks , 1979 .

[31]  E. M. Oblow,et al.  Sensitivity theory from a differential viewpoint , 1976 .

[32]  J. W. Stacey VARIATIONAL ESTIMATES OF REACTIVITY WORTHS AND REACTION RATE RATIOS IN CRITICAL NUCLEAR REACTORS. , 1973 .

[33]  Weston M. Stacey,et al.  Variational Estimates and Generalized Perturbation Theory for the Ratios of Linear and Bilinear Functionals , 1972 .

[34]  A. Gandini,et al.  A generalized perturbation method for bi-linear functionals of the real and adjoint neutron fluxes , 1967 .

[35]  L. N. Usachev Perturbation theory for the breeding ratio and for other number ratios pertaining to various reactor processes , 1964 .