Generalized Fried parameter after adaptive optics partial wave-front compensation

Atmospheric turbulence imposes the resolution limit attainable by large ground-based telescopes. This limit is lambda/r(0), where r(0) is the Fried parameter or seeing cell size. Working in the visible, adaptive optics systems can partially compensate for turbulence-induced distortions. By analogy with the Fried parameter, r(0), we have introduced a generalized Fried parameter, rho(0), that plays the same role as r(0) but in partial compensation. Using this parameter and the residual phase variance, we have described the phase structure function, estimated the point-spread function halo size, and derived an expression for the Strehl ratio as a function of the degree of compensation. Finally, it is shown that rho(0) represents the diameter of the coherent cells in the pupil domain.

[1]  S. Wandzura,et al.  Spatial correlation of phase-expansion coefficients for propagation through atmospheric turbulence , 1979 .

[2]  J. Goodman Statistical Optics , 1985 .

[3]  M P Cagigal,et al.  Rician distribution to describe speckle statistics in adaptive optics. , 1999, Applied optics.

[4]  J. Hardy,et al.  Adaptive Optics for Astronomical Telescopes , 1998 .

[5]  M. Roggemann Limited degree-of-freedom adaptive optics and image reconstruction. , 1991, Applied Optics.

[6]  R C Smithson,et al.  Quantitative simulation of image correction for astronomy with a segmented active mirror. , 1988, Applied optics.

[7]  G C Valley Long- and short-term Strehl ratios for turbulence with finite inner and outer scales. , 1979, Applied optics.

[8]  Richard Barakat,et al.  Partial atmospheric correction with adaptive optics , 1987 .

[9]  Francois Rigaut,et al.  Adaptive optics on a 3.6-m telescope : results and performance , 1991 .

[10]  Modal compensation of atmospheric turbulence induced wave front aberrations. , 1982, Applied optics.

[11]  M P Cagigal,et al.  Speckle statistics in partially corrected wave fronts. , 1998, Optics letters.

[12]  Vidal F. Canales,et al.  Analysis of the photon statistics in partially corrected wavefronts , 1997, Optics & Photonics.

[13]  Harold T. Yura,et al.  Short-term average optical-beam spread in a turbulent medium , 1973 .

[14]  Nicolas A. Roddier Atmospheric wavefront simulation using Zernike polynomials , 1990 .

[15]  Vidal F. Canales,et al.  Photon statistics in partially compensated wave fronts , 1999 .

[16]  J. Y. Wang,et al.  Modal compensation of atmospheric turbulence phase distortion , 1978 .

[17]  B L Ellerbroek,et al.  Comparison of curvature-based and Shack-Hartmann-based adaptive optics for the Gemini telescope. , 1997, Applied optics.

[18]  B. Welsh,et al.  Imaging Through Turbulence , 1996 .

[19]  David L. Fried,et al.  Statistics of a Geometric Representation of Wavefront Distortion: Errata , 1965 .

[20]  R. Noll Zernike polynomials and atmospheric turbulence , 1976 .

[21]  Emil Wolf,et al.  Principles of Optics: Contents , 1999 .

[22]  Andreas Glindemann,et al.  Improved performance of adaptive optics in the visible , 1994 .

[23]  Jean-Marc Conan,et al.  Etude de la correction partielle en optique adaptative , 1994 .

[24]  F. Roddier V The Effects of Atmospheric Turbulence in Optical Astronomy , 1981 .