Large-scale, density functional theory-based screening of alloys for hydrogen evolution

[1]  J. Nørskov,et al.  Computational high-throughput screening of electrocatalytic materials for hydrogen evolution , 2006, Nature materials.

[2]  J. Nørskov,et al.  Hydrogen evolution over bimetallic systems: understanding the trends. , 2006, Chemphyschem : a European journal of chemical physics and physical chemistry.

[3]  Thomas Bligaard,et al.  Toward computational screening in heterogeneous catalysis: Pareto-optimal methanation catalysts , 2006 .

[4]  W. Colella,et al.  Cleaning the Air and Improving Health with Hydrogen Fuel-Cell Vehicles , 2005, Science.

[5]  José M. Serra,et al.  Integrating high-throughput characterization into combinatorial heterogeneous catalysis: unsupervised construction of quantitative structure/property relationship models , 2005 .

[6]  Jacob Bonde,et al.  Biomimetic hydrogen evolution: MoS2 nanoparticles as catalyst for hydrogen evolution. , 2005, Journal of the American Chemical Society.

[7]  Thomas Bligaard,et al.  Trends in the exchange current for hydrogen evolution , 2005 .

[8]  Xin Yang,et al.  Synthesis of the H-cluster framework of iron-only hydrogenase , 2005, Nature.

[9]  M. Mavrikakis,et al.  Surface and subsurface hydrogen: adsorption properties on transition metals and near-surface alloys. , 2005, The journal of physical chemistry. B.

[10]  W. Goddard,et al.  Energetics of hydrogen coverage on group VIII transition metal surfaces and a kinetic model for adsorption/desorption. , 2005, The Journal of chemical physics.

[11]  I. G. Medvedev To a Theory of Electrocatalysis for the Hydrogen Evolution Reaction: The Hydrogen Chemisorption Energy on the Transition Metal Alloys within the Anderson–Newns Model , 2004 .

[12]  M. Mavrikakis,et al.  Alloy catalysts designed from first principles , 2004, Nature materials.

[13]  H. Jónsson,et al.  Origin of the Overpotential for Oxygen Reduction at a Fuel-Cell Cathode , 2004 .

[14]  A. Hagemeyer,et al.  High throughput screening of low temperature SCR and SCD De-NOx catalysts in scanning mass spectrometer , 2004 .

[15]  Suljo Linic,et al.  Selectivity driven design of bimetallic ethylene epoxidation catalysts from first principles , 2004 .

[16]  Thomas Bligaard,et al.  The Brønsted–Evans–Polanyi relation and the volcano curve in heterogeneous catalysis , 2004 .

[17]  J. G. Chen,et al.  Modification of the surface electronic and chemical properties of Pt(111) by subsurface 3d transition metals. , 2004, The Journal of chemical physics.

[18]  Jens W. Saalfrank,et al.  Directed evolution of noble-metal-free catalysts for the oxidation of CO at room temperature. , 2004, Angewandte Chemie.

[19]  Xue-qing Gong,et al.  A systematic study of CO oxidation on metals and metal oxides: density functional theory calculations. , 2004, Journal of the American Chemical Society.

[20]  S. Guan,et al.  Discovery from combinatorial heterogeneous catalysis: A new class of catalyst for ethane oxidative dehydrogenation at low temperatures , 2003 .

[21]  M. Mavrikakis,et al.  A first-principles study of surface and subsurface H on and in Ni(111): diffusional properties and coverage-dependent behavior , 2003 .

[22]  W. Goddard,et al.  Quantum Mechanical–Rapid Prototyping Applied to Methane Activation , 2003 .

[23]  P. Raybaud,et al.  Kinetic interpretation of catalytic activity patterns based on theoretical chemical descriptors , 2003 .

[24]  M. Sangaranarayanan,et al.  Hydrogen Evolution Reaction on Electrodes: Influence of Work Function, Dipolar Adsorption, and Desolvation Energies , 2002 .

[25]  Manos Mavrikakis,et al.  Electronic structure and catalysis on metal surfaces. , 2002, Annual review of physical chemistry.

[26]  J. Dumesic,et al.  Kinetics of heterogeneous catalytic reactions: Analysis of reaction schemes , 2001 .

[27]  Anthony F. Volpe,et al.  Applications of combinatorial methods in catalysis , 2001 .

[28]  B S Clausen,et al.  Catalyst design by interpolation in the periodic table: bimetallic ammonia synthesis catalysts. , 2001, Journal of the American Chemical Society.

[29]  M. Neurock,et al.  Electronic Factors Governing Ethylene Hydrogenation and Dehydrogenation Activity of Pseudomorphic PdML/Re(0001), PdML/Ru(0001), Pd(111), and PdML/Au(111) Surfaces , 2000 .

[30]  Andrei V. Ruban,et al.  Surface segregation energies in transition-metal alloys , 1999 .

[31]  L. Bengtsson,et al.  Dipole correction for surface supercell calculations , 1999 .

[32]  J. Nørskov,et al.  Improved adsorption energetics within density-functional theory using revised Perdew-Burke-Ernzerhof functionals , 1999 .

[33]  J. Nørskov,et al.  Effect of Strain on the Reactivity of Metal Surfaces , 1998 .

[34]  Clausen,et al.  Design of a surface alloy catalyst for steam reforming , 1998, Science.

[35]  J. Nørskov,et al.  Surface electronic structure and reactivity of transition and noble metals , 1997 .

[36]  G. Kresse,et al.  Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set , 1996 .

[37]  Morikawa,et al.  CO chemisorption at metal surfaces and overlayers. , 1996, Physical review letters.

[38]  K Schulten,et al.  VMD: visual molecular dynamics. , 1996, Journal of molecular graphics.

[39]  Jens K. Nørskov,et al.  Electronic factors determining the reactivity of metal surfaces , 1995 .

[40]  S. Trasatti Surface science and electrochemistry: concepts and problems , 1995 .

[41]  D. Vanderbilt,et al.  Soft self-consistent pseudopotentials in a generalized eigenvalue formalism. , 1990, Physical review. B, Condensed matter.

[42]  S. Trasatti Work function, electronegativity, and electrochemical behaviour of metals: III. Electrolytic hydrogen evolution in acid solutions , 1972 .

[43]  R. Parsons The rate of electrolytic hydrogen evolution and the heat of adsorption of hydrogen , 1958 .

[44]  B. Conway,et al.  Electrolytic Hydrogen Evolution Kinetics and Its Relation to the Electronic and Adsorptive Properties of the Metal , 1957 .