An experimental approach to enhance Cu wire bonding yield through parameter optimization

Gold (Au) wire is the preferred material for wire bonding in the semiconductor industry. However, the rising price of Au has become a key issue in IC assembly and design. To stay competitive, costs must be reduced. Copper (Cu) wire can also be used in wire bonding. Cu wire is cheaper than Au wire. To obtain the best yield of wire bonding and to reduce cost, this study develops an experimental approach by utilizing neural networks to establish the functional relationship between control factors and responses and then applying genetic algorithms to obtain the optimal control factor settings of the Cu wire bonding process. Using the developed approach for Cu wire bonding parameter design, the production yield increased from 98.5 to 99.65%, resulting in approximately USD 1.16 million in savings.

[1]  Chao-Ton Su,et al.  Optimizing the IC wire bonding process using a neural networks/genetic algorithms approach , 2003, J. Intell. Manuf..

[2]  Paul W. Munro Neural Network Architectures: An Introduction, Judith Dayhoff. Van Nostrand Reinhold, Boston, MA (1990), $38.95, 259 pp, ISBN: 0-442-20744-1 , 1992 .

[3]  Madhan Shridhar Phadke,et al.  Quality Engineering Using Robust Design , 1989 .

[4]  Douglas C. Montgomery,et al.  Modified Desirability Functions for Multiple Response Optimization , 1996 .

[5]  C. Yang,et al.  Study of optimal laser parameters for cutting QFN packages by Taguchi's matrix method , 2007 .

[6]  Mu-Chen Chen,et al.  Applying neural network and scatter search to optimize parameter design with dynamic characteristics , 2005, J. Oper. Res. Soc..

[7]  Lennie E. N. Lim,et al.  Application of Taguchi methods in the optimization of the laser-cutting process , 1992 .

[8]  Chih-Ming Hsu,et al.  Multi-objective machine-component grouping in cellular manufacturing: a genetic algorithm , 1998 .

[9]  Chao-Ton Su,et al.  Optimization of the Cu wire bonding process for IC assembly using Taguchi methods , 2011, Microelectron. Reliab..

[10]  T. S. Lia,et al.  Applying robust multi-response quality engineering for parameter selection using a novel neural–genetic algorithm , 2003 .

[11]  Bogdan M. Wilamowski,et al.  Neural Network Architectures , 2011, Intelligent Systems.

[12]  Li-Fei Chen,et al.  Combining neural networks and genetic algorithms for optimising the parameter design of the inter-metal dielectric process , 2012 .

[13]  Maghsud Solimanpur,et al.  Optimisation of cutting parameters using a multi-objective genetic algorithm , 2009 .

[14]  Laurene V. Fausett,et al.  Fundamentals Of Neural Networks , 1993 .

[15]  Randy L. Haupt,et al.  Practical Genetic Algorithms , 1998 .

[16]  Sam Kwong,et al.  Genetic Algorithms : Concepts and Designs , 1998 .

[17]  Chih-Ming Hsu,et al.  A novel approach for optimizing the optical performance of the broadband tap coupler , 2003, Int. J. Syst. Sci..

[18]  Kurt Hornik,et al.  Universal approximation of an unknown mapping and its derivatives using multilayer feedforward networks , 1990, Neural Networks.

[19]  Tarunraj Singh,et al.  Machining condition optimization by genetic algorithms and simulated annealing , 1997, Comput. Oper. Res..

[20]  Cliff T. Ragsdale,et al.  Combining a neural network with a genetic algorithm for process parameter optimization , 2000 .

[21]  David E. Goldberg,et al.  Genetic Algorithms in Search Optimization and Machine Learning , 1988 .

[22]  S. N. Sivanandam,et al.  Introduction to genetic algorithms , 2007 .

[23]  Charles L. Karr,et al.  Industrial Applications of Genetic Algorithms , 1998 .

[24]  Ching-Kong Chao,et al.  Applying ANN/GA algorithm to optimize the high fill-factor microlens array fabrication using UV proximity printing process , 2005 .

[25]  Pei-Chann Chang,et al.  A fuzzy neural network for the flow time estimation in a semiconductor manufacturing factory , 2008 .

[26]  Genichi Taguchi,et al.  Taguchi's Quality Engineering Handbook , 2004 .