Porosity of metamorphic rocks and fluid migration within subduction interfaces

[1]  B. Reynard,et al.  Deuterium‑hydrogen inter-diffusion in chlorite , 2018, Chemical Geology.

[2]  M. Shirzaei,et al.  Episodic creep events on the San Andreas Fault caused by pore-pressure variations , 2018, Nature Geoscience.

[3]  P. Audet,et al.  Fluid pressure and shear zone development over the locked to slow slip region in Cascadia , 2018, Science Advances.

[4]  P. V. van Keken,et al.  Fluid Migration in a Subducting Viscoelastic Slab , 2018 .

[5]  G. Abers,et al.  The cold and relatively dry nature of mantle forearcs in subduction zones , 2017 .

[6]  B. Reynard,et al.  D/H diffusion in serpentine , 2017 .

[7]  W. Sanford Estimating regional-scale permeability–depth relations in a fractured-rock terrain using groundwater-flow model calibration , 2017, Hydrogeology Journal.

[8]  H. Jung,et al.  Crystal preferred orientation of an amphibole experimentally deformed by simple shear , 2014, Nature Communications.

[9]  B. Reynard,et al.  Deformation mechanisms and rheology of serpentines in experiments and in nature , 2014 .

[10]  F. Chester,et al.  Low Coseismic Friction on the Tohoku-Oki Fault Determined from Temperature Measurements , 2013, Science.

[11]  F. Chester,et al.  Low Coseismic Shear Stress on the Tohoku-Oki Megathrust Determined from Laboratory Experiments , 2013, Science.

[12]  F. Chester,et al.  Structure and Composition of the Plate-Boundary Slip Zone for the 2011 Tohoku-Oki Earthquake , 2013, Science.

[13]  B. Reynard,et al.  Pressure-temperature estimates of the lizardite/antigorite transition in high pressure serpentinites , 2013 .

[14]  J. Nakajima,et al.  Seismic evidence for high pore pressures in the oceanic crust: Implications for fluid‐related embrittlement , 2013 .

[15]  J. Nakajima,et al.  Thermal–petrological controls on the location of earthquakes within subducting plates , 2013 .

[16]  I. Katayama,et al.  Episodic tremor and slow slip potentially linked to permeability contrasts at the Moho , 2012 .

[17]  B. Reynard,et al.  Creep of phyllosilicates at the onset of plate tectonics , 2012 .

[18]  S. Ide Variety and spatial heterogeneity of tectonic tremor worldwide , 2012 .

[19]  Naoshi Hirata,et al.  Propagation of Slow Slip Leading Up to the 2011 Mw 9.0 Tohoku-Oki Earthquake , 2012, Science.

[20]  Hiroo Kanamori,et al.  Depth‐varying rupture properties of subduction zone megathrust faults , 2011 .

[21]  I. Katayama,et al.  Permeability anisotropy of serpentinite and fluid pathways in a subduction zone , 2011 .

[22]  B. Reynard,et al.  Electrical conductivity of the serpentinised mantle and fluid flow in subduction zones , 2011 .

[23]  N. Christensen,et al.  High pore pressures and porosity at 35 km depth in the Cascadia subduction zone , 2011 .

[24]  K. Fischer,et al.  he global range of subduction zone thermal models , 2010 .

[25]  S. Ingebritsen,et al.  Permeability of the Continental Crust: Dynamic Variations Inferred from Seismicity and Metamorphism , 2010 .

[26]  Jay D. Bass,et al.  Elasticity of antigorite, seismic detection of serpentinites, and anisotropy in subduction zones , 2009 .

[27]  B. Reynard,et al.  D/H isotopic fractionation between brucite Mg(OH)2 and water from first-principles vibrational modeling , 2009 .

[28]  Kelin Wang,et al.  Weakening of the subduction interface and its effects on surface heat flow, slab dehydration, and mantle wedge serpentinization , 2008 .

[29]  J. Mavrogenes,et al.  The importance of talc and chlorite “hybrid” rocks for volatile recycling through subduction zones; evidence from the high-pressure subduction mélange of New Caledonia , 2008 .

[30]  B. Reynard,et al.  High-Pressure Creep of Serpentine, Interseismic Deformation, and Initiation of Subduction , 2007, Science.

[31]  H. Kawakatsu,et al.  Seismic Evidence for Deep-Water Transportation in the Mantle , 2007, Science.

[32]  J. Nakajima,et al.  Existence of a seismic belt in the upper plane of the double seismic zone extending in the along‐arc direction at depths of 70–100 km beneath NE Japan , 2006 .

[33]  B. Reynard,et al.  Determination of trace element partition coefficients between water and minerals by high‐pressure and high‐temperature experiments: Leaching technique , 2005 .

[34]  D. Kohlstedt,et al.  Grain boundaries as reservoirs of incompatible elements in the Earth's mantle , 2004, Nature.

[35]  V. M. Shmonov,et al.  Permeability of the continental crust: implications of experimental data , 2003 .

[36]  S. Ingebritsen,et al.  Geological implications of a permeability-depth curve for the continental crust , 1999 .

[37]  A. Yasuda,et al.  Control of the location of the volcanic front in island arcs by aqueous fluid connectivity in the mantle wedge , 1999, Nature.

[38]  E. Bruce Watson,et al.  Grain-scale permeabilities of texturally equilibrated, monomineralic rocks , 1998 .

[39]  H. Kleebe,et al.  Viscoelastic sliding and diffusive relaxation along grain boundaries in polycrystalline boron nitride , 1997 .

[40]  N. Sleep,et al.  Creep, compaction and the weak rheology of major faults , 1992, Nature.

[41]  J. Pinkston,et al.  Basal slip and mechanical anisotropy of biotite , 1990 .

[42]  Amos Nur,et al.  Porosity reduction and crustal pore pressure development , 1984 .

[43]  S. D. Hartog,et al.  Subduction megathrust creep governed by pressure solution and frictional-viscous flow , 2017 .

[44]  Michael G. Bostock,et al.  Seismic evidence for overpressured subducted oceanic crust and megathrust fault sealing , 2009, Nature.

[45]  V. M. Shmonov,et al.  Permeability of rocks at elevated temperatures and pressures , 1994 .

[46]  John Crank,et al.  The Mathematics Of Diffusion , 1956 .