On the estimation of spatial averaging volume for determining stress using atomistic methods

The estimation of stress at a continuum point from the atomistic scale requires volume averaging over a region that contains this point. A hypothesis is put forth to obtain a lower bound for the size of this region based on an analogy to the Ising model. This hypothesis is tested on copper using two classical elasticity problems.

[1]  M. Baskes,et al.  Embedded-atom method: Derivation and application to impurities, surfaces, and other defects in metals , 1984 .

[2]  A. Oleś Fingerprints of spin–orbital entanglement in transition metal oxides , 2012, Journal of physics. Condensed matter : an Institute of Physics journal.

[3]  Hoover,et al.  Canonical dynamics: Equilibrium phase-space distributions. , 1985, Physical review. A, General physics.

[4]  J. Maxwell,et al.  I.—On Reciprocal Figures, Frames, and Diagrams of Forces , 1870, Transactions of the Royal Society of Edinburgh.

[5]  R. Clausius,et al.  XVI. On a mechanical theorem applicable to heat , 1870 .

[6]  R. Hardy,et al.  Formulas for determining local properties in molecular‐dynamics simulations: Shock waves , 1982 .

[7]  Jonathan A. Zimmerman,et al.  Reconsideration of Continuum Thermomechanical Quantities in Atomic Scale Simulations , 2008 .

[8]  M. Gurtin,et al.  An introduction to continuum mechanics , 1981 .

[9]  F. Reif,et al.  Fundamentals of Statistical and Thermal Physics , 1965 .

[10]  Ellad B. Tadmor,et al.  A Unified Interpretation of Stress in Molecular Systems , 2010, 1008.4819.

[11]  Denis J. Evans,et al.  The Nose–Hoover thermostat , 1985 .

[12]  A. I. Murdoch,et al.  THE MOTIVATION OF CONTINUUM CONCEPTS AND RELATIONS FROM DISCRETE CONSIDERATIONS , 1983 .

[13]  A. Love A treatise on the mathematical theory of elasticity , 1892 .

[14]  Jonathan A. Zimmerman,et al.  Calculation of stress in atomistic simulation , 2004 .

[15]  J. CLERK-MAXWELL,et al.  O ver de contimiiteit van den gas- en vloeistofiocstand Academisch proefschrift , 1874, Nature.

[16]  J. Kirkwood,et al.  The Statistical Mechanical Theory of Transport Processes. IV. The Equations of Hydrodynamics , 1950 .

[17]  A. Petford-Long,et al.  Atomic scale structure of sputtered metal multilayers , 2001 .

[18]  J W Martin,et al.  Many-body forces in metals and the Brugger elastic constants , 1975 .

[19]  D. Lazarus The Variation of the Adiabatic Elastic Constants of KCl, NaCl, CuZn, Cu, and Al with Pressure to 10,000 Bars , 1949 .

[20]  N. Goldenfeld Lectures On Phase Transitions And The Renormalization Group , 1972 .

[21]  A. Eringen Edge dislocation in nonlocal elasticity , 1977 .