Modeling Flexibility in Myosin V Using a Multiscale Articulated Multi-Rigid Body Approach

[1]  Martin Bier,et al.  Modelling processive motor proteins: Moving on two legs in the microscopic realm , 2005 .

[2]  M. Bier Processive motor protein as an overdamped brownian stepper. , 2003, Physical review letters.

[3]  P. Garstecki,et al.  Diffusion and viscosity in a crowded environment: from nano- to macroscale. , 2006, The journal of physical chemistry. B.

[4]  J. Spudich,et al.  Dynamics of myosin, microtubules, and Kinesin-6 at the cortex during cytokinesis in Drosophila S2 cells , 2009, The Journal of cell biology.

[5]  Wenjun Zheng,et al.  Multiscale modeling of structural dynamics underlying force generation and product release in actomyosin complex , 2009, Proteins.

[6]  W. E. Moerner,et al.  ADP-induced rocking of the kinesin motor domain revealed by single-molecule fluorescence polarization microscopy , 2001, Nature Structural Biology.

[7]  David Parker,et al.  Coarse-Grained Structural Modeling of Molecular Motors Using Multibody Dynamics , 2009, Cellular and molecular bioengineering.

[8]  U. Lei,et al.  Viscous torque on a sphere under arbitrary rotation , 2006 .

[9]  A. Kolomeisky,et al.  Simple mechanochemistry describes the dynamics of kinesin molecules , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[10]  Matthias Rief,et al.  Force-dependent stepping kinetics of myosin-V. , 2005, Biophysical journal.

[11]  Albert S Kim,et al.  Brownian Dynamics, Molecular Dynamics, and Monte Carlo modeling of colloidal systems. , 2004, Advances in colloid and interface science.

[12]  R. Fox,et al.  Kinesin's biased stepping mechanism: amplification of neck linker zippering. , 2006, Biophysical journal.

[13]  Heiner Linke,et al.  Mechanochemical model for myosin V , 2009, Proceedings of the National Academy of Sciences.

[14]  John Trinick,et al.  Two-headed binding of a processive myosin to F-actin , 2000, Nature.

[15]  Kenneth A. Taylor,et al.  Three-dimensional structure of the myosin V inhibited state by cryoelectron tomography , 2006, Nature.

[16]  Joachim Kohlbrecher,et al.  Size and shape of micelles studied by means of SANS, PCS, and FCS. , 2010, Langmuir : the ACS journal of surfaces and colloids.

[17]  P. Forscher,et al.  Brain myosin-V is a two-headed unconventional myosin with motor activity , 1993, Cell.

[18]  A. Bowling,et al.  A new switching strategy for addressing Euler parameters in dynamic modeling and simulation of rigid multibody systems , 2013 .

[19]  F. Reif,et al.  Fundamentals of Statistical and Thermal Physics , 1965 .

[20]  K. Zeldovich,et al.  Motor proteins transporting cargos , 2005, The European physical journal. E, Soft matter.

[21]  Sean X. Sun,et al.  Dynamics of myosin-V processivity. , 2005, Biophysical journal.

[22]  Stefan Diez,et al.  Towards the application of cytoskeletal motor proteins in molecular detection and diagnostic devices. , 2010, Current opinion in biotechnology.

[23]  Vimal Singh,et al.  Perturbation methods , 1991 .

[24]  M. Takano,et al.  Violation of the fluctuation-dissipation theorem in a protein system. , 2006, Biophysical journal.

[25]  H. Rafii-Tabar,et al.  Computational modelling of the stochastic dynamics of kinesin biomolecular motors , 2007 .

[26]  K. Schulten,et al.  Structure-based model of the stepping motor of PcrA helicase. , 2006, Biophysical journal.

[27]  Timothy C. Elston,et al.  Mathematical and Computational Methods for Studying Energy Transduction in Protein Motors , 2007 .

[28]  Gregory A Voth,et al.  Multiscale modeling of biomolecular systems: in serial and in parallel. , 2007, Current opinion in structural biology.

[29]  Mahdi Haghshenas-Jaryani,et al.  Multiscale dynamic modeling of flexibility in myosin V using a planar mechanical model , 2012, 2012 IEEE International Conference on Robotics and Biomimetics (ROBIO).

[30]  Alan Bowling,et al.  The small mass assumption applied to the multibody dynamics of motor proteins. , 2009, Journal of biomechanics.

[31]  F. Bueche Introduction to Physics for Scientists and Engineers , 1969 .

[32]  A. Vilfan Elastic lever-arm model for myosin V. , 2005, Biophysical journal.

[33]  E. Krementsova,et al.  Differential labeling of myosin V heads with quantum dots allows direct visualization of hand-over-hand processivity. , 2005, Biophysical journal.

[34]  Kurt S. Anderson,et al.  Substructured molecular dynamics using multibody dynamics algorithms , 2008 .

[35]  Mahdi Haghshenas-Jaryani,et al.  Multiscale dynamic modeling of processive motor proteins , 2011, 2011 IEEE International Conference on Robotics and Biomimetics.

[36]  M. Fisher,et al.  Molecular motors: a theorist's perspective. , 2007, Annual review of physical chemistry.

[37]  J. M. Sancho,et al.  Kinesin as an Electrostatic Machine , 2006, Journal of biological physics.

[38]  Roberto Dominguez,et al.  Structure of the light chain-binding domain of myosin V. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[39]  Robert E. Rudd,et al.  COARSE-GRAINED MOLECULAR DYNAMICS AND THE ATOMIC LIMIT OF FINITE ELEMENTS , 1998 .

[40]  Jhih-Wei Chu,et al.  Emerging methods for multiscale simulation of biomolecular systems , 2007 .

[41]  A. Vilfan Five models for myosin V. , 2008, Frontiers in bioscience.

[42]  Henry Hess,et al.  Biomolecular motors at the intersection of nanotechnology and polymer science , 2010 .

[43]  Y. Levin,et al.  Electrostatic correlations: from plasma to biology , 2002 .

[44]  Steven M Block,et al.  Kinesin motor mechanics: binding, stepping, tracking, gating, and limping. , 2007, Biophysical journal.