Infrared Perfect Absorbers Fabricated by Colloidal Mask Etching of Al–Al2O3–Al Trilayers

We propose a combined fabrication method of reactive ion etching and large-scale colloidal mask to fabricate mid-infrared metamaterial perfect absorbers using aluminum–aluminum oxide-aluminum trilayers. The absorptivities of the fabricated samples reached as high as 98% and the absorption bandwidths were comparable to those of the absorbers based on gold or silver. Following Kirchhoff’s law, their emission spectra exhibited sharp single emission peaks indicating high potential as narrow-band infrared emitters. The results obtained here demonstrate that earth-abundant aluminum is a high-performance plasmonic materials in the mid-infrared range, and open up a route for fabricating cost-effective scalable plasmonic devices such as efficient light harvesting structures, thermal emitters, and infrared sensors.

[1]  Costas M. Soukoulis,et al.  Wide-angle perfect absorber/thermal emitter in the terahertz regime , 2008, 0807.2479.

[2]  Jeremy J. Baumberg,et al.  Localized and delocalized plasmons in metallic nanovoids , 2006 .

[3]  R. V. Duyne,et al.  Nanosphere lithography: A materials general fabrication process for periodic particle array surfaces , 1995 .

[4]  R. Adato,et al.  Dual-band perfect absorber for multispectral plasmon-enhanced infrared spectroscopy. , 2012, ACS nano.

[5]  Fernando López,et al.  Spectrally selective gas cell for electrooptical infrared compact multigas sensor , 1995 .

[6]  Koray Aydin,et al.  Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers. , 2011, Nature communications.

[7]  Harald Giessen,et al.  Large‐Area Low‐Cost Tunable Plasmonic Perfect Absorber in the Near Infrared by Colloidal Etching Lithography , 2015 .

[8]  Irina Puscasu,et al.  Photonic crystal enhanced narrow-band infrared emitters , 2002 .

[9]  V. Dierolf,et al.  Direct near-field optical imaging of UV bowtie nanoantennas. , 2009, Optics express.

[10]  M. Majewski,et al.  Optical properties of metallic films for vertical-cavity optoelectronic devices. , 1998, Applied optics.

[11]  Peter Nordlander,et al.  Aluminum for plasmonics. , 2014, ACS nano.

[12]  D. Wasserman,et al.  Selective thermal emission from patterned steel. , 2010, Optics express.

[13]  Mark W. Knight,et al.  Aluminum plasmonic nanoantennas. , 2012, Nano letters.

[14]  J. Wan Tunable thermal emission at infrared frequencies via tungsten gratings , 2008, 0810.4266.

[15]  Tzung‐Fang Guo,et al.  High-Throughput Nanofabrication of Infra-red and Chiral Metamaterials using Nanospherical-Lens Lithography , 2013, Scientific Reports.

[16]  Zhuomin M. Zhang,et al.  Wavelength-selective and diffuse emitter enhanced by magnetic polaritons for thermophotovoltaics , 2012 .

[17]  G. Schatz,et al.  Localized Surface Plasmon Resonance Spectroscopy of Triangular Aluminum Nanoparticles , 2008 .

[18]  Kazuaki Sakoda,et al.  Dual-band infrared metasurface thermal emitter for CO2 sensing , 2014 .

[19]  Makoto Okada,et al.  Thermal emission of two-color polarized infrared waves from integrated plasmon cavities , 2008 .

[20]  Susumu Noda,et al.  Single-peak narrow-bandwidth mid-infrared thermal emitters based on quantum wells and photonic crystals , 2013 .

[21]  Yongqian Li,et al.  Surface-enhanced molecular spectroscopy (SEMS) based on perfect-absorber metamaterials in the mid-infrared , 2013, Scientific Reports.

[22]  H. Solak,et al.  Plasmon resonances of aluminum nanoparticles and nanorods , 2008 .

[23]  Changtao Wang,et al.  Design principles for infrared wide-angle perfect absorber based on plasmonic structure. , 2011, Optics express.

[24]  M. Hentschel,et al.  Infrared perfect absorber and its application as plasmonic sensor. , 2010, Nano letters.

[25]  G. J. Snyder,et al.  Complex thermoelectric materials. , 2008, Nature materials.

[26]  Willie J Padilla,et al.  Taming the blackbody with infrared metamaterials as selective thermal emitters. , 2011, Physical review letters.

[27]  Xing Zhu,et al.  Tunable wide-angle plasmonic perfect absorber at visible frequencies , 2012 .

[28]  Mingbo Pu,et al.  Engineering the dispersion of metamaterial surface for broadband infrared absorption. , 2012, Optics letters.

[29]  David M. Bierman,et al.  A nanophotonic solar thermophotovoltaic device. , 2014, Nature nanotechnology.

[30]  G. Shvets,et al.  Wide-angle infrared absorber based on a negative-index plasmonic metamaterial , 2008, 0807.1312.

[31]  Jing Wang,et al.  High performance optical absorber based on a plasmonic metamaterial , 2010 .

[32]  X. Weng,et al.  Dual-band absorption of mid-infrared metamaterial absorber based on distinct dielectric spacing layers. , 2013, Optics Letters.

[33]  Guoqiang Chen,et al.  Dual-band infrared perfect absorber based on asymmetric T-shaped plasmonic array. , 2014, Optics express.

[34]  Makoto Okada,et al.  Controlled thermal emission of polarized infrared waves from arrayed plasmon nanocavities , 2008 .

[35]  Gennady Shvets,et al.  Large-area, wide-angle, spectrally selective plasmonic absorber , 2011, 1104.3129.

[36]  R. Carminati,et al.  Coherent thermal antenna using a photonic crystal slab. , 2006, Physical review letters.

[37]  Aykutlu Dana,et al.  Exploiting Native Al2O3 for Multispectral Aluminum Plasmonics , 2014 .

[38]  Si‐Chen Lee,et al.  Localized surface plasmon polaritons in Ag/SiO2/Ag plasmonic thermal emitter , 2008 .

[39]  Si‐Chen Lee,et al.  Double wavelength infrared emission by localized surface plasmonic thermal emitter , 2014 .

[40]  Willie J Padilla,et al.  Perfect metamaterial absorber. , 2008, Physical review letters.

[41]  Si‐Chen Lee,et al.  High performance midinfrared narrow-band plasmonic thermal emitter , 2006 .