Cobalt-Free Perovskite Oxide La0.6Sr0.4Fe0.8Ni0.2O3−δ as Active and Robust Oxygen Electrode for Reversible Solid Oxide Cells

Reversible solid oxide cells have received increasing attention due to high efficiency. Cobalt-free perovskite electrode has compatible thermal expansion coefficient matching with the electrolyte and the reversible operation to inhibit the segregation of Sr. Herein a novel cobalt-free La0.6Sr0.4Fe0.8Ni0.2O3−δ perovskite is developed and investigated as oxygen electrode for reversible solid oxide cells. The electrochemical performance of La0.6Sr0.4Fe0.8Ni0.2O3−δ oxygen electrode in fuel cell mode and electrolysis mode is investigated in detail. The maximum power density of 961 mW cm–2 and polarization resistance of 0.142 Ω cm2 at 800 °C can be achieved in fuel cell mode. While the cell is operated in electrolysis mode, the current density ranges from 0.53 A cm–2 at 750 °C to 1.09 A cm–2 at 850 °C with 50 vol % absolute humidity at 1.3 V, and the hydrogen generation rate can reach up to 1348.5 mL (cm2 h)−1 with 90 vol % absolute humidity at 800 °C. The reversible solid oxide cells show excellent reversibili...

[1]  B. Chi,et al.  Novel quasi-symmetrical solid oxide electrolysis cells with in-situ exsolved cathode for CO2 electrolysis , 2019, Journal of CO2 Utilization.

[2]  L. Sygellou,et al.  Au-doped Ni/GDC as an Improved Cathode Electrocatalyst for H2O Electrolysis in SOECs , 2018, Applied Catalysis B: Environmental.

[3]  S. Jiang,et al.  Suppressed Sr segregation and performance of directly assembled La0.6Sr0.4Co0.2Fe0.8O3-δ oxygen electrode on Y2O3-ZrO2 electrolyte of solid oxide electrolysis cells , 2018 .

[4]  P. Sarkar,et al.  The effect of pore-former morphology on the electrochemical performance of solid oxide fuel cells under combined fuel cell and electrolysis modes , 2018 .

[5]  M. J. López-Robledo,et al.  Reversible operation of microtubular solid oxide cells using La0.6Sr0.4Co0.2Fe0.8O3-δ-Ce0.9Gd0.1O2-δ oxygen electrodes , 2018 .

[6]  E. Siebert,et al.  Degradation mechanism of La0.6Sr0.4Co0.2Fe0.8O3-δ/Gd0.1Ce0.9O2-δ composite electrode operated under solid oxide electrolysis and fuel cell conditions , 2017 .

[7]  Yuan Cheng,et al.  Modification of LSF-YSZ composite cathodes by atomic layer deposition , 2017 .

[8]  S. Jiang,et al.  Polarization-Induced Interface and Sr Segregation of in Situ Assembled La0.6Sr0.4Co0.2Fe0.8O3-δ Electrodes on Y2O3-ZrO2 Electrolyte of Solid Oxide Fuel Cells. , 2016, ACS applied materials & interfaces.

[9]  Yaohui Zhang,et al.  Electrochemically Driven Deactivation and Recovery in PrBaCo2 O5+δ Oxygen Electrodes for Reversible Solid Oxide Fuel Cells. , 2016, ChemSusChem.

[10]  C. Xia,et al.  Millimeter tubular solid oxide electrolysis cells with modified asymmetric hydrogen electrode , 2016 .

[11]  Shaomin Liu,et al.  Novel solid oxide cells with SrCo0.8Fe0.1Ga0.1O3−δ oxygen electrode for flexible power generation and hydrogen production , 2016 .

[12]  Ning Wang,et al.  Performance enhancement of solution impregnated nanostructured La0.8Sr0.2Co0.8Ni0.2O3-δ oxygen electrode for intermediate temperature solid oxide electrolysis cells , 2016 .

[13]  D. An,et al.  Investigation of cobalt-free perovskite Sr2FeTi0.75Mo0.25O6−δ as new cathode for solid oxide fuel cells , 2016 .

[14]  T. Ishihara,et al.  Boron deposition and poisoning of La0.8Sr0.2MnO3 oxygen electrodes of solid oxide electrolysis cells under accelerated operation conditions , 2016 .

[15]  D. Moon,et al.  The effect of promoters in La0.9M0.1Ni0.5Fe0.5O3 (M = Sr, Ca) perovskite catalysts on dry reforming of methane , 2015 .

[16]  A. Virkar,et al.  Reversible high temperature cells for power generation and hydrogen production using mixed ionic electronic conducting solid electrolytes , 2015 .

[17]  R. Basu,et al.  Microstructural and chemical changes after high temperature electrolysis in solid oxide electrolysis cell , 2015 .

[18]  X. Ye,et al.  High performance of intermediate temperature solid oxide electrolysis cells using Nd2NiO4+δ impregnated scandia stabilized zirconia oxygen electrode , 2015 .

[19]  S. Jensen,et al.  Eliminating degradation in solid oxide electrochemical cells by reversible operation. , 2015, Nature Materials.

[20]  Minfang Han,et al.  Electrochemical performance and stability of lanthanum strontium cobalt ferrite oxygen electrode with gadolinia doped ceria barrier layer for reversible solid oxide fuel cell , 2014 .

[21]  Ke-ning Sun,et al.  The characteristic of strontium-site deficient perovskites SrxFe1.5Mo0.5O6−δ (x = 1.9–2.0) as intermediate-temperature solid oxide fuel cell cathodes , 2014 .

[22]  Mogens Bjerg Mogensen,et al.  High temperature electrolysis in alkaline cells, solid proton conducting cells, and solid oxide cells. , 2014, Chemical reviews.

[23]  Minfang Han,et al.  Electrochemical stability of La0.6Sr0.4Co0.2Fe0.8O3−δ-infiltrated YSZ oxygen electrode for reversible solid oxide fuel cells , 2014 .

[24]  J. Stevenson,et al.  High-efficiency intermediate temperature solid oxide electrolyzer cells for the conversion of carbon dioxide to fuels , 2014 .

[25]  J. O’Brien,et al.  Durability evaluation of reversible solid oxide cells , 2013 .

[26]  E. Wachsman,et al.  Performance of La0.1Sr0.9Co0.8Fe0.2O3−δ and La0.1Sr0.9Co0.8Fe0.2O3−δ–Ce0.9Gd0.1O2 oxygen electrodes with Ce0.9Gd0.1O2 barrier layer in reversible solid oxide fuel cells , 2013 .

[27]  F. Tietz,et al.  Degradation phenomena in a solid oxide electrolysis cell after 9000 h of operation , 2013 .

[28]  Prabhakar Singh,et al.  LSM–YSZ interactions and anode delamination in solid oxide electrolysis cells , 2012 .

[29]  E. Wachsman,et al.  Mechanism of La_0.6Sr_0.4Co_0.2Fe_0.8O_3 cathode degradation , 2012 .

[30]  J. Alonso,et al.  A New Family of Mo-Doped SrCoO3−δ Perovskites for Application in Reversible Solid State Electrochemical Cells , 2012 .

[31]  M. Laguna-Bercero Recent advances in high temperature electrolysis using solid oxide fuel cells: A review , 2012 .

[32]  S. Jiang,et al.  Failure mechanism of (La,Sr)MnO 3 oxygen electrodes of solid oxide electrolysis cells , 2011 .

[33]  A. Virkar Mechanism of oxygen electrode delamination in solid oxide electrolyzer cells , 2010 .

[34]  T. He,et al.  Novel SrCo1−yNbyO3−δ cathodes for intermediate-temperature solid oxide fuel cells , 2010 .

[35]  E. Ivers-Tiffée,et al.  Impedance Study of Alternative ( La , Sr ) FeO3 − δ and ( La , Sr ) ( Co , Fe ) O3 − δ MIEC Cathode Compositions , 2010 .

[36]  Y. Zhai,et al.  Preparation of LSM–YSZ composite powder for anode of solid oxide electrolysis cell and its activation mechanism , 2009 .

[37]  Hanako Nishino,et al.  Polarization properties of La0.6Sr0.4Co0.2Fe0.8O3-based double layer-type oxygen electrodes for reversible SOFCs , 2009 .

[38]  Jingming Xu,et al.  Synthesis and electrochemical properties of LSM and LSF perovskites as anode materials for high temperature steam electrolysis , 2009 .

[39]  Y. Bo,et al.  Microstructural characterization and electrochemical properties of Ba0.5Sr0.5Co0.8Fe0.2O3−δ and its application for anode of SOEC , 2008 .

[40]  K. Świerczek Thermoanalysis, nonstoichiometry and thermal expansion of La0.4Sr0.6Co0.2Fe0.8O3 − δ, La0.2Sr0.8Co0.2Fe0.8O3 − δ, La0.9Sr0.1Co1/3Fe1/3Ni1/3O3 − δ and La0.6Sr0.4Co0.2Fe0.6Ni0.2O3 − δ perovskites , 2008 .

[41]  William J. Weber,et al.  Electrochemical Properties of Mixed Conducting Perovskites La1 − x M x Co1 − y Fe y O 3 − δ (M = Sr, Ba, Ca) , 1996 .

[42]  B. Chi,et al.  Direct Electrolysis of CO2 in Symmetrical Solid Oxide Electrolysis Cell Based on La0.6Sr0.4Fe0.8Ni0.2O3-δ Electrode , 2018 .

[43]  N. Chen,et al.  Enhanced performance of La0.7Sr0.3Fe0.9Ni0.1O3 cathode by partial substitution with Ce , 2017 .

[44]  A. Chukin,et al.  Oxygen non-stoichiometry and mixed conductivity of La0.5Sr0.5Fe1–xMnxO3–δ , 2015, Journal of Solid State Electrochemistry.