Stabilized SQP revisited
暂无分享,去创建一个
[1] Andreas Fischer,et al. Local behavior of an iterative framework for generalized equations with nonisolated solutions , 2002, Math. Program..
[2] Alexey F. Izmailov,et al. On attraction of Newton-type iterates to multipliers violating second-order sufficiency conditions , 2009, Math. Program..
[3] Alexey F. Izmailov,et al. Examples of dual behaviour of Newton-type methods on optimization problems with degenerate constraints , 2009, Comput. Optim. Appl..
[4] Mikhail V. Solodov,et al. Stabilized sequential quadratic programming for optimization and a stabilized Newton-type method for variational problems , 2010, Math. Program..
[5] William W. Hager,et al. Stability in the presence of degeneracy and error estimation , 1999, Math. Program..
[6] Paul T. Boggs,et al. Sequential Quadratic Programming , 1995, Acta Numerica.
[7] A. F. Izmailov,et al. Numerical results for a globalized active-set Newton method for mixed complementarity problems , 2005 .
[8] William W. Hager,et al. Stabilized Sequential Quadratic Programming , 1999, Comput. Optim. Appl..
[9] Stephen J. Wright,et al. Numerical Behavior of a Stabilized SQP Method for Degenerate NLP Problems , 2002, COCOS.
[10] Stephen J. Wright. Constraint identification and algorithm stabilization for degenerate nonlinear programs , 2000, Math. Program..
[11] J. F. Bonnans,et al. Local analysis of Newton-type methods for variational inequalities and nonlinear programming , 1994 .
[12] Stephen J. Wright. Superlinear Convergence of a Stabilized SQP Method to a Degenerate Solution , 1998, Comput. Optim. Appl..
[13] Francisco Facchinei,et al. On the Accurate Identification of Active Constraints , 1998, SIAM J. Optim..
[14] Jerzy Kyparisis,et al. On uniqueness of Kuhn-Tucker multipliers in nonlinear programming , 1985, Math. Program..
[15] J. Frédéric Bonnans,et al. Perturbation Analysis of Optimization Problems , 2000, Springer Series in Operations Research.
[16] Alexey F. Izmailov,et al. Newton-Type Methods for Optimization Problems without Constraint Qualifications , 2004, SIAM J. Optim..
[17] Alexey F. Izmailov,et al. On attraction of linearly constrained Lagrangian methods and of stabilized and quasi-Newton SQP methods to critical multipliers , 2011, Math. Program..
[18] F. Facchinei,et al. Finite-Dimensional Variational Inequalities and Complementarity Problems , 2003 .
[19] A. F. Izmailov. Solution sensitivity for Karush–Kuhn–Tucker systems with non-unique Lagrange multipliers , 2010 .
[20] Paul Pinsler. Über das Vorkommen definiter und semidefiniter Formen in Scharen quadratischer Formen , 1936 .
[21] G. Debreu. Definite and Semidefinite Quadratic Forms , 1952 .
[22] Stephen J. Wright. An Algorithm for Degenerate Nonlinear Programming with Rapid Local Convergence , 2005, SIAM J. Optim..
[23] Stephen J. Wright. Modifying SQP for Degenerate Problems , 2002, SIAM J. Optim..
[24] O. Mangasarian,et al. The Fritz John Necessary Optimality Conditions in the Presence of Equality and Inequality Constraints , 1967 .
[25] Alexey F. Izmailov,et al. On the analytical and numerical stability of critical Lagrange multipliers , 2005 .
[26] Alexey F. Izmailov,et al. Sharp Primal Superlinear Convergence Results for Some Newtonian Methods for Constrained Optimization , 2010, SIAM J. Optim..