Thermotropic Liquid Crystalline Polymer Fibers

Super-strength, lightweight materials used in bullet-proof vests, high-performance cables and tires, and stealth airplanes are built from liquid crystalline polymer (LCP) fibers. The remarkable strength properties are dominated by molecular alignment achieved as a result of the complex interactions at play in fiber processes. The fiber manufacturing process begins with a high temperature liquid phase of rigid rod macromolecules, whose orientation couples to the strong elongational free surface flow. The flow exits at a prescribed radius and velocity ($v_0$), tapers and cools as it evolves downstream, and solidifies along some free boundary, below which a take-up velocity ($v_1 > v_0$) is imposed at a fixed location. Our goal in this paper is a model for this process which realistically couples the hydrodynamics, the LCP dynamics, and the temperature field, along with the free surface and boundary conditions. Moreover, we aim for a model, by necessity complex, that provides nontrivial fiber process predict...

[1]  Susumu Kase,et al.  Studies on melt spinning. I. Fundamental equations on the dynamics of melt spinning , 1965 .

[2]  L. R. Glicksman,et al.  The Dynamics of a Heated Free Jet of Variable Viscosity Liquid at Low Reynolds Numbers , 1968 .

[3]  M. Matovich,et al.  Spinning a Molten Threadline. Steady-State Isothermal Viscous Flows , 1969 .

[4]  Susumu Kase,et al.  Studies on melt spinning. IV. On the stability of melt spinning , 1974 .

[5]  Morton M. Denn,et al.  Mechanics of steady spinning of a viscoelastic liquid , 1975 .

[6]  Andrzej Ziabicki,et al.  Fundamentals of fibre formation: The science of fibre spinning and drawing , 1976 .

[7]  C. Petrie,et al.  Fundamentals of fibre formation : A. Ziabicki, John Wiley & Sons, London, August 1976, 502 pages, price £19.50 ($ 39.00) , 1978 .

[8]  Masao Doi,et al.  Rheological properties of rodlike polymers in isotropic and liquid crystalline phases , 1980 .

[9]  Masao Doi,et al.  Molecular dynamics and rheological properties of concentrated solutions of rodlike polymers in isotropic and liquid crystalline phases , 1981 .

[10]  William W. Schultz,et al.  One-Dimensional Liquid Fibers , 1982 .

[11]  Henry H. George,et al.  Model of steady‐state melt spinning at intermediate take‐up speeds , 1982 .

[12]  B. P. Huynh,et al.  Study of the non-isothermal glass fibre drawing process , 1983 .

[13]  G. Caginalp An analysis of a phase field model of a free boundary , 1986 .

[14]  S. Edwards,et al.  The Theory of Polymer Dynamics , 1986 .

[15]  Darryl D. Holm,et al.  One-dimensional closure models for three-dimensional incompressible viscoelastic free jets: von Kármán flow geometry and elliptical cross-section , 1988, Journal of Fluid Mechanics.

[16]  S. E. Bechtel,et al.  1-D closure models for slender 3-D viscoelastic free jets: von Karman flow geometry and elliptical cross section , 1988 .

[17]  J. Spruiell,et al.  On-line studies and computer simulation of the melt spinning of nylon-66 filaments , 1988 .

[18]  Paul Wilmott,et al.  On a mathematical model for fiber tapering , 1989 .

[19]  Joseph B. Keller,et al.  Slender jets and thin sheets with surface tension , 1990 .

[20]  Stefan Zahorski,et al.  An alternative approach to non-isothermal melt spinning with axial and radial viscosity distributions , 1990 .

[21]  J. Ericksen Liquid crystals with variable degree of orientation , 1991 .

[22]  Margaret H. Wright,et al.  A Deferred Correction Method for Nonlinear Two-Point Boundary Value Problems: Implementation and Numerical Evaluation , 1991, SIAM J. Sci. Comput..

[23]  Stephen E. Bechtel,et al.  Practical application of a higher order perturbation theory for slender viscoelastic jets and fibers , 1992 .

[24]  Benjamin T.F. Chung,et al.  Heat transfer from moving fibers in melt spinning process , 1992 .

[25]  A. A. Wheeler,et al.  Thermodynamically-consistent phase-field models for solidification , 1992 .

[26]  M. Denn,et al.  Issues Concerning the Rate of Heat Transfer from a Spinline , 1992 .

[27]  Robert C. Armstrong,et al.  A constitutive equation for liquid‐crystalline polymer solutions , 1993 .

[28]  R. C. Armstrong,et al.  Analysis of isothermal spinning of liquid‐crystalline polymers , 1993 .

[29]  Qi Wang,et al.  Dynamics of Slender Viscoelastic Free Jets , 1994, SIAM J. Appl. Math..

[30]  M. Gregory Forest,et al.  Numerical simulations of nonisothermal fiber spinning processes , 1994 .

[31]  M. Gregory Forest,et al.  1-D models for thin filaments of polymeric liquid crystals , 1994 .

[32]  M. Gregory Forest,et al.  Torsional Effects in High-Order Viscoelastic Thin-Filament Models , 1995, SIAM J. Appl. Math..

[33]  Anthony J. McHugh,et al.  A continuum model for the dynamics of flow‐induced crystallization , 1996 .

[34]  A. A. Collyer,et al.  Rheology and processing of liquid crystal polymers , 1996 .

[35]  M. Gregory Forest,et al.  One dimensional isothermal spinning models for liquid crystalline polymer fibers , 1997 .

[36]  N. Mori,et al.  Numerical simulation of the spinning flow of liquid crystalline polymers , 1997 .

[37]  M. Gregory Forest,et al.  1-D models for thin filaments of liquid-crystalline polymers: coupling of orientation and flow in the stability of simple solutions , 1997 .

[38]  Stephen E. Bechtel,et al.  Exploiting accurate spinline measurements for elongational material characterization , 1997 .

[39]  M. Gregory ForestDepartment {d Isothermal Spinning Models for Liquid Crystalline Polymer Fibers , 1997 .

[40]  Antony N. Beris,et al.  A model for the necking phenomenon in high-speed fiber spinning based on flow-induced crystallization , 1998 .

[41]  M. Gregory Forest,et al.  The role of microstructure in taming the Rayleigh capillary instability of cylindrical jets , 1998 .

[42]  Stephen E. Bechtel,et al.  A thin-filament melt spinning model with radial resolution of temperature and stress , 1998 .

[43]  Hong Zhou,et al.  Model study of the spinning of thermotropic liquid crystalline polymers: Fiber performance predictions and bounds on throughput , 1999 .

[44]  M. Gregory Forest,et al.  An isothermal model for high-speed spinning of liquid crystalline polymer fibers – coupling of flow, orientation, and crystallization , 1999 .